-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkmeans.c
314 lines (264 loc) · 7.57 KB
/
kmeans.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*-------------------------------------------------------------------------
*
* kmeans.c
* Generic k-means implementation
*
* Copyright (c) 2016, Paul Ramsey <[email protected]>
*
*------------------------------------------------------------------------*/
#include <assert.h>
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "kmeans.h"
#ifdef KMEANS_THREADED
#include <pthread.h>
#endif
static void
update_r(kmeans_config *config)
{
int i;
for (i = 0; i < config->num_objs; i++)
{
double distance, curr_distance;
int cluster, curr_cluster;
Pointer obj;
assert(config->objs != NULL);
assert(config->num_objs > 0);
assert(config->centers);
assert(config->clusters);
obj = config->objs[i];
/*
* Don't try to cluster NULL objects, just add them
* to the "unclusterable cluster"
*/
if (!obj)
{
config->clusters[i] = KMEANS_NULL_CLUSTER;
continue;
}
/* Initialize with distance to first cluster */
curr_distance = (config->distance_method)(obj, config->centers[0]);
curr_cluster = 0;
/* Check all other cluster centers and find the nearest */
for (cluster = 1; cluster < config->k; cluster++)
{
distance = (config->distance_method)(obj, config->centers[cluster]);
if (distance < curr_distance)
{
curr_distance = distance;
curr_cluster = cluster;
}
}
/* Store the nearest cluster this object is in */
config->clusters[i] = curr_cluster;
}
}
static void
update_means(kmeans_config *config)
{
int i;
for (i = 0; i < config->k; i++)
{
/* Update the centroid for this cluster */
(config->centroid_method)(config->objs, config->clusters, config->num_objs, i, config->centers[i]);
}
}
#ifdef KMEANS_THREADED
static void * update_r_threaded_main(void *args)
{
kmeans_config *config = (kmeans_config*)args;
update_r(config);
pthread_exit(args);
}
static void update_r_threaded(kmeans_config *config)
{
/* Computational complexity is function of objs/clusters */
/* We only spin up threading infra if we need more than one core */
/* running. We keep the threshold high so the overhead of */
/* thread management is small compared to thread compute time */
int num_threads = config->num_objs * config->k / KMEANS_THR_THRESHOLD;
/* Can't run more threads than the maximum */
num_threads = (num_threads > KMEANS_THR_MAX ? KMEANS_THR_MAX : num_threads);
/* If the problem size is small, don't bother w/ threading */
if (num_threads < 1)
{
update_r(config);
}
else
{
pthread_t thread[KMEANS_THR_MAX];
pthread_attr_t thread_attr;
kmeans_config thread_config[KMEANS_THR_MAX];
int obs_per_thread = config->num_objs / num_threads;
int i, rc;
for (i = 0; i < num_threads; i++)
{
/*
* Each thread gets a copy of the config, but with the list pointers
* offest to the start of the batch the thread is responsible for, and the
* object count number adjusted similarly.
*/
memcpy(&(thread_config[i]), config, sizeof(kmeans_config));
thread_config[i].objs += i*obs_per_thread;
thread_config[i].clusters += i*obs_per_thread;
thread_config[i].num_objs = obs_per_thread;
if (i == num_threads-1)
{
thread_config[i].num_objs += config->num_objs - num_threads*obs_per_thread;
}
/* Initialize and set thread detached attribute */
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
/* Now we just run the thread, on its subset of the data */
rc = pthread_create(&thread[i], &thread_attr, update_r_threaded_main, (void *) &thread_config[i]);
if (rc)
{
printf("ERROR: return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
/* Free attribute and wait for the other threads */
pthread_attr_destroy(&thread_attr);
/* Wait for all calculations to complete */
for (i = 0; i < num_threads; i++)
{
void *status;
rc = pthread_join(thread[i], &status);
if (rc)
{
printf("ERROR: return code from pthread_join() is %d\n", rc);
exit(-1);
}
}
}
}
int update_means_k;
pthread_mutex_t update_means_k_mutex;
static void *
update_means_threaded_main(void *arg)
{
kmeans_config *config = (kmeans_config*)arg;
int i = 0;
do
{
pthread_mutex_lock (&update_means_k_mutex);
i = update_means_k;
update_means_k++;
pthread_mutex_unlock (&update_means_k_mutex);
if (i < config->k)
(config->centroid_method)(config->objs, config->clusters, config->num_objs, i, config->centers[i]);
}
while (i < config->k);
pthread_exit(arg);
}
static void
update_means_threaded(kmeans_config *config)
{
/* We only spin up threading infra if we need more than one core */
/* running. We keep the threshold high so the overhead of */
/* thread management is small compared to thread compute time */
int num_threads = config->num_objs / KMEANS_THR_THRESHOLD;
/* Can't run more threads than the maximum */
num_threads = (num_threads > KMEANS_THR_MAX ? KMEANS_THR_MAX : num_threads);
/* If the problem size is small, don't bother w/ threading */
if (num_threads < 1)
{
update_means(config);
}
else
{
/* Mutex protected counter to drive threads */
pthread_t thread[KMEANS_THR_MAX];
pthread_attr_t thread_attr;
int i, rc;
pthread_mutex_init(&update_means_k_mutex, NULL);
update_means_k = 0;
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
/* Create threads to perform computation */
for (i = 0; i < num_threads; i++)
{
/* Now we just run the thread, on its subset of the data */
rc = pthread_create(&thread[i], &thread_attr, update_means_threaded_main, (void *) config);
if (rc)
{
printf("ERROR: return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
pthread_attr_destroy(&thread_attr);
/* Watch until completion */
for (i = 0; i < num_threads; i++)
{
void *status;
rc = pthread_join(thread[i], &status);
if (rc)
{
printf("ERROR: return code from pthread_join() is %d\n", rc);
exit(-1);
}
}
pthread_mutex_destroy(&update_means_k_mutex);
}
}
#endif /* KMEANS_THREADED */
kmeans_result
kmeans(kmeans_config *config)
{
int iterations = 0;
int *clusters_last;
size_t clusters_sz = sizeof(int)*config->num_objs;
assert(config);
assert(config->objs);
assert(config->num_objs);
assert(config->distance_method);
assert(config->centroid_method);
assert(config->centers);
assert(config->k);
assert(config->clusters);
assert(config->k <= config->num_objs);
/* Zero out cluster numbers, just in case user forgets */
memset(config->clusters, 0, clusters_sz);
/* Set default max iterations if necessary */
if (!config->max_iterations)
config->max_iterations = KMEANS_MAX_ITERATIONS;
/*
* Previous cluster state array. At this time, r doesn't mean anything
* but it's ok
*/
clusters_last = kmeans_malloc(clusters_sz);
while (1)
{
/* Store the previous state of the clustering */
memcpy(clusters_last, config->clusters, clusters_sz);
#ifdef KMEANS_THREADED
update_r_threaded(config);
update_means_threaded(config);
#else
update_r(config);
update_means(config);
#endif
/*
* if all the cluster numbers are unchanged since last time,
* we are at a stable solution, so we can stop here
*/
if (memcmp(clusters_last, config->clusters, clusters_sz) == 0)
{
kmeans_free(clusters_last);
config->total_iterations = iterations;
return KMEANS_OK;
}
if (iterations++ > config->max_iterations)
{
kmeans_free(clusters_last);
config->total_iterations = iterations;
return KMEANS_EXCEEDED_MAX_ITERATIONS;
}
}
kmeans_free(clusters_last);
config->total_iterations = iterations;
return KMEANS_ERROR;
}