Mosaic ML
relies on MCTS-based pipeline optimization library mosaic
.
pip install git+https://github.com/herilalaina/mosaic@v0-alpha
pip install git+https://github.com/herilalaina/mosaic_ml
A simple example of using mosaic
to configure machine learning pipeline.
from mosaic_ml.automl import AutoML
X_train, y_train, X_test, y_test, cat = load_task(6)
autoML = AutoML(time_budget=120,
time_limit_for_evaluation=100,
memory_limit=3024,
seed=1,
scoring_func="balanced_accuracy",
exec_dir="execution_dir"
)
best_config, best_score = autoML.fit(X_train, y_train, X_test, y_test, categorical_features=cat)
print(autoML.get_run_history())
@inproceedings{ijcai2019-457,
title = {Automated Machine Learning with Monte-Carlo Tree Search},
author = {Rakotoarison, Herilalaina and Schoenauer, Marc and Sebag, Michèle},
booktitle = {Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, {IJCAI-19}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
pages = {3296--3303},
year = {2019},
month = {7},
doi = {10.24963/ijcai.2019/457},
url = {https://doi.org/10.24963/ijcai.2019/457},
}