-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
143 lines (109 loc) · 4.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from __future__ import print_function, division
import os
import torch
import pandas as pd
import torchvision
from skimage import io, transform
import numpy as np
from matplotlib import pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils, models
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import time
import copy
import torch.optim as optim
import torch.nn as nn
from torch.optim import lr_scheduler
from bookDataset import *
def train_model(model, criterion, optimizer, scheduler, dataloaders, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
# for inputs, labels in dataloaders[phase]:
for i, batch in enumerate(dataloaders[phase]):
inputs = batch["cover"]
labels = batch["class"]
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
if __name__ == "__main__":
train_csv_path = "dataset/book30-listing-train.csv"
test_csv_path = "dataset/book30-listing-test.csv"
cover_path = "dataset/covers"
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
data_loaders = create_data_loaders(train_csv_path, test_csv_path,
cover_path, None, 4, num_workers = 4)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, data_loaders, num_epochs=25)
# get some random training images
dataiter = iter(trainloader)
a = dataiter.next()
# # show images
# plt.imshow(torchvision.utils.make_grid(images))
# # print labels
# print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
item = dataset.__getitem__(0)
imgplot = plt.imshow(item["cover"])
plt.savefig("test.png")