-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtestmodel.py
268 lines (208 loc) · 9.32 KB
/
testmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from stats import Statistics
from bookDataset import BookDataset
import cyclic_sceduler
def load_resnet(n):
if n == 18:
return models.resnet18(pretrained=True)
elif n == 34:
return models.resnet34(pretrained=True)
elif n == 50:
return models.resnet50(pretrained=True)
elif n == 101:
return models.resnet101(pretrained=True)
elif n == 152:
return models.resnet152(pretrained=True)
def change_model(model, trained_layers, n_outputs):
"""
Freez the layers of the models expect the ones on top and add some layers on top of the mode
"""
for param in model.parameters():
param.requires_grad = False
# Count the number of layers
dpt = 0
for child in model.children():
dpt += 1
# Unfreeze last trained_layers layers
ct = 0
for child in model.children():
ct += 1
if ct > dpt - (trained_layers - 1):
for param in child.parameters():
param.requires_grad = True
num_ftrs = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(num_ftrs, 256),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(256, n_outputs),
nn.LogSoftmax(dim=1))
return model
def train_model(model, dataloaders, dataset_sizes, batch_size, criterion, optimizer, scheduler = None, num_epochs=25, device="cpu", scheduler_step="cycle"):
"""
Train a model and return the trained model and statistics from the training
"""
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
stats = Statistics()
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
if scheduler and scheduler_step == "cycle":
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
progress = 0
lastPrint = 0
start = time.time()
for inputs, labels in dataloaders[phase]:
progress += batch_size / dataset_sizes[phase] * 100
if(progress > 10 + lastPrint) or lastPrint == 0:
lastPrint = progress
print('Epoch {}, {:.2f}% time : {:.2f}'.format(epoch, progress, time.time() - start))
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
if(scheduler and scheduler_step == "batch"):
scheduler.batch_step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
end = time.time()
stats.losses[phase].append(epoch_loss)
stats.accuracies[phase].append(epoch_acc)
stats.epochs[phase].append(epoch)
stats.times[phase].append(end - start)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
print('Time taken : {}'.format(end - start))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
stats.time_elapsed = time_elapsed
stats.best_acc = best_acc
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return (model, stats)
if __name__ == "__main__":
n_epoch = 70
batch_size = 64
n_workers = 4
resnet = 18
trained_layers = 10
n_outputs = 30
finaLayer = "ReluDropoutSoftmax"
filename = "adam"
min_lr = 1e-4
max_lr = 6e-3
lr = min_lr
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
cover_path = "dataset/covers"
csv_paths = {'train' : "dataset/train_set.csv",
'val' : "dataset/validation_set.csv"}
image_datasets = {x: BookDataset(csv_paths[x], cover_path, transform=data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
shuffle=True, num_workers=n_workers, pin_memory=False)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
######################################################################
# Training the model
# ------------------
model_ft = load_resnet(resnet)
model_ft = change_model(model_ft, trained_layers, n_outputs)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# optimizer_ft = optim.SGD(model_ft.parameters(), lr=min_lr, momentum=0.9)
optimizer_ft = optim.Adam(model_ft.parameters(), lr = 1e-3)
# exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
exp_lr_scheduler = cyclic_sceduler.CyclicLR(optimizer_ft, mode='triangular', base_lr=min_lr, max_lr=max_lr, step_size=2 * dataset_sizes['train'] / batch_size)
model_ft, stats = train_model(model_ft, dataloaders, dataset_sizes, batch_size, criterion, optimizer_ft, None,
num_epochs=n_epoch, device=device, scheduler_step="batch")
folder = ""
######################################################################
# Save results
# ------------------
file = open(folder + "{}.txt".format(filename), "a+")
file.write("{}_Resnet{}, lr : {}, batch size : {}, trained_layers : {}, n_outputs : {}\n".format(finaLayer, resnet, lr, batch_size, trained_layers, n_outputs))
for phase in ['train', 'val']:
for i in range(len(stats.epochs[phase])):
file.write("{} : Epoch {} ,accuracy : {:.4f}, time {:.0f}m {:.0f}s\n"
.format(phase, stats.epochs[phase][i], stats.accuracies[phase][i], stats.times[phase][i] // 60, stats.times[phase][i] % 60))
file.write('Training complete in {:.0f}m {:.0f}s \n'.format(
stats.time_elapsed // 60, stats.time_elapsed % 60))
file.write('Best val Acc: {:4f} \n\n'.format(stats.best_acc))
file.close()
#Plot results
plt.figure(frameon = False)
for x in ['train', 'val']:
plt.plot(stats.epochs[x], stats.accuracies[x], label=x)
plt.xlabel('epoch')
plt.ylabel('Accuracy')
plt.grid(True)
plt.legend()
plt.savefig(folder +"cover_adam/n_epoch_{}__Resnet{}__batch_size_{}__trained_layers_{}__n_outputs_{}__Accuracy.pdf".format(n_epoch, resnet, batch_size, trained_layers, n_outputs))
plt.figure(frameon = False)
for x in ['train', 'val']:
plt.plot(stats.epochs[x], stats.losses[x], label=x)
plt.xlabel('epoch')
plt.ylabel('losses')
plt.grid(True)
plt.legend()
plt.savefig(folder +"cover_adam/n_epoch_{}__Resnet{}__batch_size_{}__trained_layers_{}__n_outputs_{}__Loss.pdf".format(n_epoch, resnet, batch_size, trained_layers, n_outputs))
torch.save(model_ft.state_dict(), folder + "Adam")