-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_text_iterators.py
128 lines (96 loc) · 4.59 KB
/
train_text_iterators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from testmodel import *
def train_model(model, iterators, dataset_sizes, batch_size, criterion, optimizer, scheduler = None, num_epochs=25,
device="cpu", scheduler_step="cycle", combined = False, clip_gradient = False):
"""
Train model using torch text iterators
"""
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
stats = Statistics()
lrstats = []
model.to(device)
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
if(scheduler and scheduler_step == "cycle"):
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
progress = 0
lastPrint = 0
start = time.time()
for batch in iterators[phase]:
if combined:
inputs = (batch.cover, batch.title)
else:
inputs = batch.title
labels = batch.label
progress += batch_size / dataset_sizes[phase] * 100
if(progress > 10 + lastPrint) or lastPrint == 0:
lastPrint = progress
if scheduler:
print('Epoch {} : lr {}, {:.2f}% time : {:.2f}'.format(epoch, scheduler.get_lr(), progress, time.time() - start))
else:
print('Epoch {}, {:.2f}% time : {:.2f}'.format(epoch, progress, time.time() - start))
if type(inputs) is list or type(inputs) is tuple:
for i, input in enumerate(inputs):
inputs[i] = input.to(device)
else:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
if clip_gradient:
nn.utils.clip_grad_norm_(model.parameters(), 5)
optimizer.step()
if(scheduler and scheduler_step == "batch"):
scheduler.batch_step()
# statistics
if type(inputs) is list or type(inputs) is tuple:
running_loss += loss.item() * inputs[0].size(0)
else:
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
end = time.time()
stats.losses[phase].append(epoch_loss)
stats.accuracies[phase].append(epoch_acc)
stats.epochs[phase].append(epoch)
stats.times[phase].append(end - start)
if phase == 'val' and scheduler:
lrstats.append((scheduler.get_lr(), epoch_acc))
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
print('Time taken : {}'.format(end - start))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
stats.time_elapsed = time_elapsed
stats.best_acc = best_acc
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return (model, stats, lrstats)