Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AttributeError: 'SegformerFeatureExtractor' object has no attribute 'reduce_labels' still has no clear guide around #35402

Open
2 of 4 tasks
deanAirre opened this issue Dec 23, 2024 · 2 comments

Comments

@deanAirre
Copy link

deanAirre commented Dec 23, 2024

System Info

Python 3.11.10, transformers 4.47.0

Who can help?

@stevhliu

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

Trying to train by using
`from transformers import AutoFeatureExtractor

feature_extractor = AutoFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")`

as feature extractor and keep getting AttributeError: 'SegformerFeatureExtractor' object has no attribute 'reduce_labels' still has no clear guide around

found this that said to repair the docs but I still haven't found the solution to do it by reading links and docs surrounding the links. Is it still a feature or should I move to other feature extractor?

Expected behavior

``AttributeError: 'SegformerFeatureExtractor' object has no attribute 'reduce_labels' ` solution should be

feature_extractor = AutoFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512", do_reduce_labels=True)
according to the link, but the problem persists.

Edit2:
Complete error message since by the time I wrote this I already try running it again for another chance. Here's the complete error code


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[158], line 1
----> 1 trainer.train()
      2 trainer.push_to_hub()

File c:\Users\Lenovo\miniconda3\envs\pretrain-huggingface\Lib\site-packages\transformers\trainer.py:2155, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)
   2152 try:
   2153     # Disable progress bars when uploading models during checkpoints to avoid polluting stdout
   2154     hf_hub_utils.disable_progress_bars()
-> 2155     return inner_training_loop(
   2156         args=args,
   2157         resume_from_checkpoint=resume_from_checkpoint,
   2158         trial=trial,
   2159         ignore_keys_for_eval=ignore_keys_for_eval,
   2160     )
   2161 finally:
   2162     hf_hub_utils.enable_progress_bars()

File c:\Users\Lenovo\miniconda3\envs\pretrain-huggingface\Lib\site-packages\transformers\trainer.py:2589, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)
   2587     self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch
   2588     self.control = self.callback_handler.on_step_end(args, self.state, self.control)
-> 2589     self._maybe_log_save_evaluate(
   2590         tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time
   2591     )
   2592 else:
   2593     self.control = self.callback_handler.on_substep_end(args, self.state, self.control)

File c:\Users\Lenovo\miniconda3\envs\pretrain-huggingface\Lib\site-packages\transformers\trainer.py:3047, in Trainer._maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time)
   3045 metrics = None
   3046 if self.control.should_evaluate:
-> 3047     metrics = self._evaluate(trial, ignore_keys_for_eval)
   3048     is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial)
   3050     if self.args.save_strategy == SaveStrategy.BEST:

File c:\Users\Lenovo\miniconda3\envs\pretrain-huggingface\Lib\site-packages\transformers\trainer.py:3001, in Trainer._evaluate(self, trial, ignore_keys_for_eval, skip_scheduler)
   3000 def _evaluate(self, trial, ignore_keys_for_eval, skip_scheduler=False):
-> 3001     metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
   3002     self._report_to_hp_search(trial, self.state.global_step, metrics)
   3004     # Run delayed LR scheduler now that metrics are populated

File c:\Users\Lenovo\miniconda3\envs\pretrain-huggingface\Lib\site-packages\transformers\trainer.py:4051, in Trainer.evaluate(self, eval_dataset, ignore_keys, metric_key_prefix)
   4048 start_time = time.time()
   4050 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
-> 4051 output = eval_loop(
   4052     eval_dataloader,
   4053     description="Evaluation",
   4054     # No point gathering the predictions if there are no metrics, otherwise we defer to
   4055     # self.args.prediction_loss_only
   4056     prediction_loss_only=True if self.compute_metrics is None else None,
   4057     ignore_keys=ignore_keys,
   4058     metric_key_prefix=metric_key_prefix,
   4059 )
   4061 total_batch_size = self.args.eval_batch_size * self.args.world_size
   4062 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:

File c:\Users\Lenovo\miniconda3\envs\pretrain-huggingface\Lib\site-packages\transformers\trainer.py:4340, in Trainer.evaluation_loop(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix)
   4338     eval_set_kwargs["losses"] = all_losses if "loss" in args.include_for_metrics else None
   4339     eval_set_kwargs["inputs"] = all_inputs if "inputs" in args.include_for_metrics else None
-> 4340     metrics = self.compute_metrics(
   4341         EvalPrediction(predictions=all_preds, label_ids=all_labels, **eval_set_kwargs)
   4342     )
   4343 elif metrics is None:
   4344     metrics = {}

Cell In[156], line 27, in compute_metrics(eval_pred)
     19 pred_labels = logits_tensor.detach().cpu().numpy()
     20 # currently using _compute instead of compute
     21 # see this issue for more info: https://github.com/huggingface/evaluate/pull/328#issuecomment-1286866576
     22 metrics = metric._compute(
     23         predictions=pred_labels,
     24         references=labels,
     25         num_labels=num_labels,
     26         ignore_index=0,
---> 27         reduce_labels=feature_extractor.reduce_labels,
     28     )
     30 # add per category metrics as individual key-value pairs
     31 per_category_accuracy = metrics.pop("per_category_accuracy").tolist()

AttributeError: 'SegformerFeatureExtractor' object has no attribute 'reduce_labels'
@deanAirre deanAirre added the bug label Dec 23, 2024
@NielsRogge
Copy link
Contributor

NielsRogge commented Dec 24, 2024

Hi,

Feature extractors are deprecated, you can replace the code by:

from transformers import AutoImageProcessor

image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512", do_reduce_labels=True)

it seems that reduce_labels=image_processor.reduce_labels, is passed to the metric._compute method, whereas you should be passing reduce_labels=image_processor.do_reduce_labels.

Where did you get this code from? I'll make sure it gets updated

@deanAirre
Copy link
Author

deanAirre commented Dec 28, 2024

Hi Niels, thanks for the reply,

Yes it works now like this.

from transformers import SegformerImageProcessor

feature_extractor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512", reduce_labels=True)

I got the code with do_reduce_labels from this link, quote:

One additional thing to keep in mind is that one can initialize SegformerImageProcessor with do_reduce_labels set to True or False. In some datasets (like ADE20k), the 0 index is used in the annotated segmentation maps for background. However, ADE20k doesn’t include the “background” class in its 150 labels. Therefore, do_reduce_labels is used to reduce all labels by 1, and to make sure no loss is computed for the background class (i.e. it replaces 0 in the annotated maps by 255, which is the ignore_index of the loss function used by

Thanks in advance, amazing library btw,
Sean.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

3 participants