-
Notifications
You must be signed in to change notification settings - Fork 101
/
demo_ff.py
112 lines (93 loc) · 3.4 KB
/
demo_ff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import argparse
import logging
import time
from typing import Optional, Tuple
import albumentations as A
import cv2
import numpy as np
import torch
from albumentations.pytorch import ToTensorV2
from omegaconf import DictConfig, OmegaConf
from torch import Tensor
from constants import targets
from custom_utils.utils import build_model
logging.basicConfig(format="[LINE:%(lineno)d] %(levelname)-8s [%(asctime)s] %(message)s", level=logging.INFO)
COLOR = (0, 255, 0)
FONT = cv2.FONT_HERSHEY_SIMPLEX
class Demo:
@staticmethod
def preprocess(img: np.ndarray, transform) -> Tuple[Tensor, Tuple[int, int], Tuple[int, int]]:
"""
Preproc image for model input
Parameters
----------
img: np.ndarray
input image
transform :
albumentation transforms
"""
transformed_image = transform(image=img)
return transformed_image["image"]
@staticmethod
def get_transform_for_inf(transform_config: DictConfig):
"""
Create list of transforms from config
Parameters
----------
transform_config: DictConfig
config with test transforms
"""
transforms_list = [getattr(A, key)(**params) for key, params in transform_config.items()]
transforms_list.append(ToTensorV2())
return A.Compose(transforms_list)
@staticmethod
def run(classifier, transform) -> None:
"""
Run detection model and draw bounding boxes on frame
Parameters
----------
classifier : TorchVisionModel
Classifier model
transform :
albumentation transforms
"""
cap = cv2.VideoCapture(0)
t1 = cnt = 0
while cap.isOpened():
delta = time.time() - t1
t1 = time.time()
ret, frame = cap.read()
if ret:
processed_frame = Demo.preprocess(frame, transform)
with torch.no_grad():
output = classifier([processed_frame])
label = output["labels"].argmax(dim=1)
cv2.putText(
frame, targets[int(label)], (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), thickness=3
)
fps = 1 / delta
cv2.putText(frame, f"FPS: {fps :02.1f}, Frame: {cnt}", (30, 30), FONT, 1, (255, 0, 255), 2)
cnt += 1
cv2.imshow("Frame", frame)
key = cv2.waitKey(1)
if key == ord("q"):
return
else:
cap.release()
cv2.destroyAllWindows()
def parse_arguments(params: Optional[Tuple] = None) -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Demo full frame classification...")
parser.add_argument("-p", "--path_to_config", required=True, type=str, help="Path to config")
known_args, _ = parser.parse_known_args(params)
return known_args
if __name__ == "__main__":
args = parse_arguments()
conf = OmegaConf.load(args.path_to_config)
model = build_model(conf)
transform = Demo.get_transform_for_inf(conf.test_transforms)
if conf.model.checkpoint is not None:
snapshot = torch.load(conf.model.checkpoint, map_location=torch.device("cpu"))
model.load_state_dict(snapshot["MODEL_STATE"])
model.eval()
if model is not None:
Demo.run(model, transform)