-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathticTacToe-x.cpp
347 lines (307 loc) · 10.6 KB
/
ticTacToe-x.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#include <iostream>
using namespace std;
/*
* These 4 functions correspond to the 4 algorithm steps.
* They are executed inside insertX() for every move.
*
**************
* Pseudocode
**************
* 1. Check if there's a winnable path
* 2. Check if I can prevent against a winning opponent path
* 3. Check if I can set up a winning path for the next move
* 4. Default to anywhere in an empty path
* (For 3. & 4., give preference to corners)
*/
bool checkForTwoX(char (&TTTarray)[3][3]);
bool checkForTwoO(char (&TTTarray)[3][3]);
bool checkForOneX(char (&TTTarray)[3][3]);
bool checkForEmpty(char (&TTTarray)[3][3]);
/*
* General functions for scanning through the Tic-Tac-Toe board.
* target refers to either 'X' or 'O'
* num refers to the number of targets we are looking for
*/
bool scanVertical(char (&TTTarray)[3][3], char target, int num);
bool scanHorizontal(char (&TTTarray)[3][3], char target, int num);
bool scanDiagonal(char (&TTTarray)[3][3], char target, int num);
/* For move-making */
void insertX(char (&TTTarray)[3][3]);
void printTTT(char (&TTTarray)[3][3]);
/* Unused */
void insertO(char (&TTTarray)[3][3]);
void checkForWin(char (&TTTarray)[3][3]);
int main() {
char TTTarray[3][3] = { {'-','-','-'},
{'-','-','-'},
{'-','-','-'}};
// char TTTarray[3][3] = { {'X','O','-'},
// {'-','-','-'},
// {'O','-','-'}};
// char TTTarray[3][3] = { {'-','O','X'},
// {'-','-','O'},
// {'-','-','-'}};
// char TTTarray[3][3] = { {'-','-','-'},
// {'-','-','O'},
// {'-','X','O'}};
//char TTTarray[3][3] = { {'-','-','-'},
// {'-','X','-'},
// {'-','O','-'}};
//char TTTarray[3][3] = { {'X','-','X'},
// {'-','-','-'},
// {'O','-','-'}};
// char TTTarray[3][3] = { {'O','O','-'},
// {'-','-','-'},
// {'X','X','-'}};
// char TTTarray[3][3] = { {'X','-','X'},
// {'O','X','-'},
// {'O','-','O'}};
// Loop just for testing
for (int i = 0; i < 9; i++) {
printTTT(TTTarray);
insertX(TTTarray);
printTTT(TTTarray);
insertO(TTTarray);
}
return 0;
}
// Return to main as soon as we hit a met criteria
void insertX(char (&TTTarray)[3][3]) {
if (checkForTwoX(TTTarray)) return;
if (checkForTwoO(TTTarray)) return;
if (checkForOneX(TTTarray)) return;
if (checkForEmpty(TTTarray)) return;
return;
}
// For checking own winning path
bool checkForTwoX(char (&TTTarray)[3][3]) {
if (scanVertical(TTTarray, 'X', 2)) return true;
if (scanHorizontal(TTTarray, 'X', 2)) return true;
if (scanDiagonal(TTTarray, 'X', 2)) return true;
return false;
}
// For defending opponent winning path
bool checkForTwoO(char (&TTTarray)[3][3]) {
if (scanVertical(TTTarray, 'O', 2)) return true;
if (scanHorizontal(TTTarray, 'O', 2)) return true;
if (scanDiagonal(TTTarray, 'O', 2)) return true;
return false;
}
// For adding to path with one X and zero O's
bool checkForOneX(char (&TTTarray)[3][3]) {
if (scanVertical(TTTarray, 'X', 1)) return true;
if (scanHorizontal(TTTarray, 'X', 1)) return true;
if (scanDiagonal(TTTarray, 'X', 1)) return true;
return false;
}
// For adding to an empty path
bool checkForEmpty(char (&TTTarray)[3][3]) {
if (scanVertical(TTTarray, 'X', 0)) return true;
if (scanHorizontal(TTTarray, 'X', 0)) return true;
if (scanDiagonal(TTTarray, 'X', 0)) return true;
return false;
}
bool scanVertical(char (&TTTarray)[3][3], char target, int num) {
int count = 0, // Counts occurences of the target letter
countO = 0; // Always counts O's
/*
* For each column, count the occurences of the target letter.
* If this count reaches our EXACT target frequency, place the
* next letter inside the open space in that path.
*/
for (int column = 0; column < 3; column++) {
for (int row = 0; row < 3; row++) {
if (TTTarray[row][column] == target) {
count++;
} else
if (TTTarray[row][column] == 'O') {
countO++;
}
}
// If we hit our target frequency...
if (count == num) {
// If we're one-away, just move to the open space.
if (num == 2) {
for (int row = 0; row < 3; row++) {
if (TTTarray[row][column] == '-'){
TTTarray[row][column] = 'X';
return true;
}
}
} else
/*
* The compound condition on 'num == 1' ensures that we
* don't waste a move on a path that already has an O
* blocking it.
* Give X preference to corners
*/
if ((num == 1 && countO == 0) || num == 0) {
if (TTTarray[0][column] == '-') {
TTTarray[0][column] = 'X';
return true;
} else
if (TTTarray[2][column] == '-') {
TTTarray[2][column] = 'X';
return true;
} else
if (TTTarray[1][column] == '-') {
TTTarray[1][column] = 'X';
return true;
}
}
}
// Reset the counters on each iteration
count = 0;
countO = 0;
}
return false;
}
bool scanHorizontal(char (&TTTarray)[3][3], char target, int num) {
int count = 0, // Counts occurences of the target letter
countO = 0; // Always counts O's
/*
* For each row, count the occurences of the target letter.
* If this count reaches our EXACT target frequency, place the
* next letter inside the open space in that path.
*/
for (int row = 0; row < 3; row++) {
for (int column = 0; column < 3; column++) {
if (TTTarray[row][column] == target) {
count++;
} else
if (TTTarray[row][column] == 'O') {
countO++;
}
}
// If we hit our target frequency...
if (count == num) {
// If we're one-away, just move to the open space.
if (num == 2) {
for (int column = 0; column < 3; column++) {
if (TTTarray[row][column] == '-') {
TTTarray[row][column] = 'X';
return true;
}
}
} else
/*
* The compound condition on 'num == 1' ensures that we
* don't waste a move on a path that already has an O
* blocking it.
* Give X preference to corners.
*/
if ((num == 1 && countO == 0) || num == 0) {
if (TTTarray[row][0] == '-') {
TTTarray[row][0] = 'X';
return true;
} else
if (TTTarray[row][2] == '-') {
TTTarray[row][2] = 'X';
return true;
} else
if (TTTarray[row][1] == '-') {
TTTarray[row][1] = 'X';
return true;
}
}
}
// Reset the counts for each iteration
count = 0;
countO = 0;
}
return false;
}
bool scanDiagonal(char (&TTTarray)[3][3], char target, int num) {
int count = 0,
countO = 0,
startRow = 0; // The diagonal's row in the 1st column
// Scan '\' diagonal
for (int column = 0; column < 3; column++) {
if (TTTarray[(startRow+column)][column] == target) {
count++;
} else
if (TTTarray[(startRow+column)][column] == 'O') {
countO++;
}
// If target frequency is hit
if (count == num) {
/*
* Weight all target numbers the same since we
* already parsed all the corners.
* For all cases, just move to whatever's open.
*/
if (num == 2 || (num == 1 && countO == 0) || num == 0) {
for (int column = 0; column < 3; column++) {
if (TTTarray[(startRow+column)][column] == '-') {
TTTarray[(startRow+column)][column] = 'X';
return true;
}
}
}
}
}
count = 0;
countO = 0;
startRow = 2; // The diagonal's row in the 1st column
// Scan '/' diagonal
for (int column = 0; column < 3; column++) {
if (TTTarray[(startRow-column)][column] == target) {
count++;
} else
if (TTTarray[(startRow-column)][column] == 'O') {
countO++;
}
// If target frequency is hit
if (count == num) {
/*
* Weight all target numbers the same since we
* already parsed all the corners.
* For all cases, just move to whatever's open.
*/
if (num == 2 || (num == 1 && countO == 0) || num == 0) {
for (int column = 0; column < 3; column++) {
if (TTTarray[(startRow-column)][column] == '-') {
TTTarray[(startRow-column)][column] = 'X';
return true;
}
}
}
}
}
return false;
}
void printTTT(char (&TTTarray)[3][3]) {
cout << endl;
for (int row = 0; row < 3; row++) {
for (int column = 0; column < 3; column++) {
cout << TTTarray[row][column];
}
cout << endl;
}
}
// For testing X-placement
void insertO(char (&TTTarray)[3][3]) {
int move;
cout << "Enter move: ";
cin >> move;
switch(move) {
case 1: TTTarray[0][0] = 'O';
break;
case 2: TTTarray[0][1] = 'O';
break;
case 3: TTTarray[0][2] = 'O';
break;
case 4: TTTarray[1][0] = 'O';
break;
case 5: TTTarray[1][1] = 'O';
break;
case 6: TTTarray[1][2] = 'O';
break;
case 7: TTTarray[2][0] = 'O';
break;
case 8: TTTarray[2][1] = 'O';
break;
case 9: TTTarray[2][2] = 'O';
break;
}
}