-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterp.c
436 lines (387 loc) · 11.9 KB
/
interp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
NASA/TRMM, Code 910.1.
This is the TRMM Office Radar Software Library.
Copyright (C) 1996 Dennis F. Flanigan Jr. of Applied Research Corporation,
Landover, Maryland, a NASA/GSFC on-site contractor.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Interpolation functions
*
* Dennis Flanigan, Jr.
*
* 7/7/95
* Finished testing interpolation routine.
*
* 7/6/95
* Finished up bilinear interpolation routine.
* Routine calculates values using four surrounding
* values with the same slant range.
*
* 6/29/95
* Added bilinear interpolation value routine. Rewrote
* get_surrounding sweeps so that it returns Sweeps instead of
* Sweep indexes.
*
* 6/28/95
* Added internal ray searching routine. Replaces
* RSL_get_next_closest_ray.
*
* 6/25/95
* Added internal sweep searching routine designed for use
* by interpolation routines. Replaced RSL_get_next_closest_sweep.
*
* 6/23/95
* This file was created. Started adding internal routines
* needed for calculating distences between two points
* in space.
*/
#include <stdio.h>
#include <math.h>
#include "rsl.h"
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
extern double hypot(double, double);
/***************************************************/
/* */
/* get_xyz_coord */
/* */
/* */
/***************************************************/
void get_xyz_coord(double *x,double *y,double *z,
double range,double azim,double elev)
{
/* Return x,y,z coordinates given range, azimuth angle and
* elevation angle. Memory allocation for x,y and z are
* not provided by this routine!
*/
double azim_rad,elev_rad;
# define M_PI 3.14159265358979323846
azim_rad = azim * M_PI / 180.0;
elev_rad = elev * M_PI / 180.0;
*x = cos(elev_rad) * cos(azim_rad) * range;
*y = cos(elev_rad) * sin(azim_rad) * range;
*z = sin(elev_rad) * range;
}
/***************************************************/
/* */
/* get_dist */
/* */
/* */
/***************************************************/
float get_dist(float r1,float a1,float e1,
float r2,float a2,float e2)
{
/* Give two points described by range, azimuth angle
* and elevation angle, return the distence between
* the two.
*/
double x1,y1,z1,x2,y2,z2;
get_xyz_coord(&x1,&y1,&z1,(double)r1,(double)a1,(double)e1);
get_xyz_coord(&x2,&y2,&z2,(double)r2,(double)a2,(double)e2);
return (float) sqrt(pow(x1 - x2,2) + pow(y1 - y2,2) + pow(z1 - z2,2));
}
/***************************************************/
/* */
/* get_surrounding_sweeps */
/* */
/* */
/***************************************************/
void get_surrounding_sweep(Sweep **below,Sweep **above, Volume *v,
float elev)
{
/* Return the pointers of the sweeps that are above and
* and below the elevation angle in the parameter list.
*
* Assume at least one non-NULL sweep exist in Volume.
*
* A value of NULL is set to above or below in cases
* where there is no sweep above or below.
*/
int a;
/* look for above index first */
a = 0;
while(a < v->h.nsweeps)
{
if(v->sweep[a] != NULL)
{
if(v->sweep[a]->h.elev >= elev)
{
*above = v->sweep[a];
break;
}
}
a++;
}
/* Was above ever set ?
* If not, set above to counter.
*/
if(a == v->h.nsweeps)
{
*above = NULL;
}
/* Look for index just below elev */
a--;
while(a >= 0)
{
if(v->sweep[a] != NULL)
{
if(v->sweep[a]->h.elev <= elev)
{
*below = v->sweep[a];
break;
}
}
a--;
}
/* Was a below found ? */
if (a == -1)
{
*below = NULL;
}
/* Bye */
}
/******************************************
* *
* dir_angle_diff *
* *
* Dennis Flanigan,Jr. 4/29/95 *
******************************************/
double dir_angle_diff(float x,float y)
{
/* returns difference between angles x and y. Returns
* positive value if y > x, negitive value if
* y < x.
*
*/
double d;
d = (double)(y - x);
while (d >= 180) d = -1 * (360 - d);
while (d < -180) d = (360 + d);
return d;
}
/***************************************************/
/* */
/* get_surrounding_rays */
/* */
/* */
/***************************************************/
void get_surrounding_ray(Ray **ccwise,Ray **cwise,Sweep *s,
float ray_angle)
{
/* Return the pointers to the rays that are counterclockwise
* and clockwise to the ray_angle in the parameter list.
* Memory space for the variables ccwise and cwise
* is not allocated by this routine.
*
* Assume at least two rays exist and that a hash
* table has been created.
*
* Will need to add test for first ray and last
* ray if this routine is going to be used for
* RHI scans.
*/
int hindex;
double close_diff;
Hash_table *hash_table;
Azimuth_hash *closest;
/* Find hash index close to hindex we want. This will
* used as a starting point for a search to the closest
* ray.
*/
hash_table = hash_table_for_sweep(s);
if (hash_table == NULL) return; /* Nada. */
hindex = hash_bin(hash_table,ray_angle);
/* Find hash entry with closest Ray */
closest = the_closest_hash(hash_table->indexes[hindex],ray_angle);
close_diff = dir_angle_diff(ray_angle,closest->ray->h.azimuth);
if(close_diff < 0)
{
/* Closest ray is counterclockwise to ray_angle */
*ccwise = closest->ray;
*cwise = closest->ray_high->ray;
}
else
{
/* Closest ray is clockwise to ray_angle. */
*cwise = closest->ray;
*ccwise = closest->ray_low->ray;
}
}
/***************************************************/
/* */
/* from_dB, to_dB */
/* */
/***************************************************/
double from_dB(double db)
{
return pow(10,db/10.0);
}
double to_dB(double value)
{
return 10.0 * log10(value);
}
/***************************************************/
/* */
/* get_linear_value_from_sweep */
/* */
/***************************************************/
double get_linear_value_from_sweep(Sweep *sweep,float srange,float azim,
float limit)
{
float ccw_db_value,cw_db_value;
double ccw_value,cw_value,value;
double delta_angle;
Ray *ccw_ray,*cw_ray;
get_surrounding_ray(&ccw_ray,&cw_ray,sweep,azim);
/* Assume that ccw_ray and cw_ray will be non_NULL */
if((azim - ccw_ray->h.azimuth) > limit)
{
ccw_value = -1;
}
else
{
ccw_db_value = RSL_get_value_from_ray(ccw_ray,srange);
/* Check to make sure this is a valid value */
if (ccw_db_value == BADVAL)
{
ccw_value = 0;
}
else
{
ccw_value = from_dB(ccw_db_value);
}
}
if((cw_ray->h.azimuth - azim) > limit)
{
cw_value = -1;
}
else
{
cw_db_value = RSL_get_value_from_ray(cw_ray,srange);
/* Check to make sure this is a valid value */
if (cw_db_value == BADVAL)
{
cw_value = 0;
}
else
{
cw_value = from_dB(cw_db_value);
}
}
if((cw_value != -1) && (ccw_value != -1))
{
/* Both the clockwise ray and the counterclockwise
* ray is valid.
*/
delta_angle = angle_diff(ccw_ray->h.azimuth,cw_ray->h.azimuth);
value=((angle_diff(azim,cw_ray->h.azimuth)/delta_angle)*ccw_value)
+ ((angle_diff(azim,ccw_ray->h.azimuth)/delta_angle) * cw_value);
}
else if((cw_value == -1) && (ccw_value == -1))
{
/* Neither ray is valid. */
value = -1;
}
else if(cw_value != -1)
{
/* cw_ray is only ray that is within limit. */
value = cw_value;
}
else
{
/* ccw_ray is only ray that is within limit. */
value = ccw_value;
}
return value;
}
/***************************************************/
/* */
/* RSL_get_linear_value */
/* */
/* */
/***************************************************/
float RSL_get_linear_value(Volume *v,float srange,float azim,
float elev,float limit)
{
/* Compute bilinear value from four surrounding values
* in Volume v. The four surrounding values
* are at a constant range.
*
* Limit is an angle used only to reject values
* in the azimuth plane.
*/
float db_value;
double value = 0;
double up_value, down_value;
double delta_angle;
Sweep *up_sweep,*down_sweep;
get_surrounding_sweep(&down_sweep,&up_sweep,v,elev);
/* Calculate interpolated value in sweep above
* requested point.
*/
if(up_sweep == NULL)
{
up_value = -1;
}
else
{
up_value = get_linear_value_from_sweep(up_sweep,srange,azim,limit);
}
/* Calculate interpolated value in sweep below requested point.
*/
if(down_sweep == NULL)
{
down_value = -1;
}
else
{
down_value = get_linear_value_from_sweep(down_sweep,srange,azim,limit);
}
/* Using the interpolated values calculated at the elevation
* angles in the above and below sweeps, interpolate a value
* for the elvation angle at the requested point.
*/
if((up_value != -1) && (down_value != -1))
{
delta_angle = angle_diff(up_sweep->h.elev,down_sweep->h.elev);
value =((angle_diff(elev,up_sweep->h.elev)/delta_angle) * down_value) +
((angle_diff(elev,down_sweep->h.elev)/delta_angle) * up_value);
}
else if((up_value == -1) && (down_value == -1))
{
value = -1;
}
else if(up_value != -1)
{
value = up_value;
}
else
{
value = down_value;
}
/* Convert back to dB value and return. */
if(value > 0)
{
db_value = (float)to_dB(value);
return db_value;
}
else
{
return BADVAL;
}
}