-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathallocator.cuh
152 lines (129 loc) · 5.39 KB
/
allocator.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
* Copyright 2016 The George Washington University
* Written by Hang Liu
* Directed by Prof. Howie Huang
*
* https://www.seas.gwu.edu/~howie/
* Contact: [email protected]
*
*
* Please cite the following paper:
*
* Hang Liu and H. Howie Huang. 2015. Enterprise: breadth-first graph traversal on GPUs. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '15). ACM, New York, NY, USA, Article 68 , 12 pages. DOI: http://dx.doi.org/10.1145/2807591.2807594
*
* This file is part of Enterprise.
*
* Enterprise is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Enterprise is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Enterprise. If not, see <http://www.gnu.org/licenses/>.
*/
#include "comm.h"
#include "graph.h"
template <typename vertex_t, typename index_t, typename depth_t>
struct allocator{
inline static __host__ void alloc_array
(
depth_t* &depth_d, //vertex level
vertex_t* &adj_list_d,//vertex adj ver
index_t* &adj_card_d,//each adj ver len
index_t* &strt_pos_d,//adj_list_d strt pos
vertex_t* &ex_q_sml_d,//+--------------------
vertex_t* &ex_q_mid_d,//|
vertex_t* &ex_q_lrg_d,//|-------------------+
index_t* &ex_cat_sml_sz,//|USED FOR CLASSIFIC|
index_t* &ex_cat_mid_sz,//|ATION OF CLASSIFYI|
index_t* &ex_cat_lrg_sz,//|NG THE EXPANSION Q|
index_t* &ex_cat_sml_off,//|UEUE-------------+
index_t* &ex_cat_mid_off,//|
index_t* &ex_cat_lrg_off,//+-----------------
vertex_t* &ex_cat_sml_d,//each thd obt ex_q
vertex_t* &ex_cat_mid_d,//each thd obt ex_q
vertex_t* &ex_cat_lrg_d,//each thd obt ex_q
index_t* &tr_edges_c_d,
index_t* &tr_edges_c_h,
index_t* beg_pos,
index_t* csr,
index_t vert_count,
index_t edge_count,
cudaStream_t* &stream,
const index_t bin_sz
)
{
//used for -strt_pos_d
// -adj_card_d
// -adj_list_d
long cpu_bytes = 0;
long gpu_bytes = 0;
index_t *temp = new index_t[vert_count];
cpu_bytes += (sizeof(index_t)*vert_count);
const index_t cat_sz = bin_sz*THDS_NUM*BLKS_NUM;
//+----------------------------
//|ADDED FOR CLASSIFICATION
//+----------------------------
H_ERR(cudaMalloc((void **)&ex_cat_sml_d, sizeof(vertex_t)*cat_sz));
H_ERR(cudaMalloc((void **)&ex_cat_mid_d, sizeof(vertex_t)*cat_sz));
H_ERR(cudaMalloc((void **)&ex_cat_lrg_d, sizeof(vertex_t)*cat_sz));
gpu_bytes += (3*sizeof(vertex_t)*cat_sz);
H_ERR(cudaMalloc((void **)&ex_q_sml_d, sizeof(vertex_t)*vert_count));
H_ERR(cudaMalloc((void **)&ex_q_mid_d, sizeof(vertex_t)*vert_count));
H_ERR(cudaMalloc((void **)&ex_q_lrg_d, sizeof(vertex_t)*vert_count));
gpu_bytes += (sizeof(vertex_t)*vert_count*3);
H_ERR(cudaBindTexture(0, tex_sml_exq,
ex_q_sml_d, sizeof(vertex_t)*vert_count));
H_ERR(cudaBindTexture(0, tex_mid_exq,
ex_q_mid_d, sizeof(vertex_t)*vert_count));
H_ERR(cudaBindTexture(0, tex_lrg_exq,
ex_q_lrg_d, sizeof(vertex_t)*vert_count));
const index_t off_sz = THDS_NUM*BLKS_NUM;
H_ERR(cudaMalloc((void **)&ex_cat_sml_off, sizeof(index_t)*off_sz));
H_ERR(cudaMalloc((void **)&ex_cat_mid_off, sizeof(index_t)*off_sz));
H_ERR(cudaMalloc((void **)&ex_cat_lrg_off, sizeof(index_t)*off_sz));
H_ERR(cudaMalloc((void **)&ex_cat_sml_sz, sizeof(index_t)*off_sz));
H_ERR(cudaMalloc((void **)&ex_cat_mid_sz, sizeof(index_t)*off_sz));
H_ERR(cudaMalloc((void **)&ex_cat_lrg_sz, sizeof(index_t)*off_sz));
gpu_bytes += (sizeof(vertex_t)*off_sz*6);
H_ERR(cudaMalloc((void **)&depth_d, sizeof(depth_t)*vert_count));
H_ERR(cudaBindTexture(0,tex_depth,depth_d,sizeof(depth_t)*vert_count));
H_ERR(cudaMalloc((void **)&adj_card_d, sizeof(index_t)*vert_count));
H_ERR(cudaMalloc((void **)&strt_pos_d, sizeof(index_t)*vert_count));
gpu_bytes += (sizeof(index_t)*vert_count*3);
H_ERR(cudaMemcpy(strt_pos_d, beg_pos, sizeof(index_t)*vert_count,
cudaMemcpyHostToDevice));
H_ERR(cudaBindTexture(0, tex_strt, strt_pos_d, sizeof(index_t)*vert_count));
EDGES_C = edge_count;
H_ERR(cudaMalloc((void **)&adj_list_d,sizeof(vertex_t)*edge_count));
H_ERR(cudaMemcpy(adj_list_d,
csr,sizeof(vertex_t)*edge_count, cudaMemcpyHostToDevice));
gpu_bytes += (sizeof(vertex_t)*edge_count);
//////////////////////////
//std::cout<<"before\n";
stream = (cudaStream_t *)malloc(sizeof(cudaStream_t)*Q_CARD);
for(index_t i=0;i<Q_CARD; i++)
cudaStreamCreate(&(stream[i]));
for(index_t i=0; i<vert_count; i++)
temp[i] = beg_pos[i+1]-beg_pos[i];
H_ERR(cudaMemcpy(adj_card_d, temp, sizeof(index_t)*vert_count,
cudaMemcpyHostToDevice));
H_ERR(cudaBindTexture(0, tex_card,
adj_card_d, sizeof(index_t)*vert_count));
H_ERR(cudaMalloc((void **)&tr_edges_c_d,
sizeof(index_t)*BLKS_NUM));
H_ERR(cudaMallocHost((void **)&tr_edges_c_h,
sizeof(index_t)*BLKS_NUM));
gpu_bytes += (sizeof(index_t)*BLKS_NUM);
cpu_bytes += (sizeof(index_t)*BLKS_NUM);
delete[] temp;
cpu_bytes -= (sizeof(index_t)*vert_count);
std::cout<<"GPU alloc space: "<<gpu_bytes<<" bytes\n";
std::cout<<"CPU alloc space: "<<cpu_bytes<<" bytes\n";
}
};