-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbfs_gpu_opt.cuh
447 lines (417 loc) · 11.1 KB
/
bfs_gpu_opt.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
* Copyright 2016 The George Washington University
* Written by Hang Liu
* Directed by Prof. Howie Huang
*
* https://www.seas.gwu.edu/~howie/
* Contact: [email protected]
*
*
* Please cite the following paper:
*
* Hang Liu and H. Howie Huang. 2015. Enterprise: breadth-first graph traversal on GPUs. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '15). ACM, New York, NY, USA, Article 68 , 12 pages. DOI: http://dx.doi.org/10.1145/2807591.2807594
*
* This file is part of Enterprise.
*
* Enterprise is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Enterprise is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Enterprise. If not, see <http://www.gnu.org/licenses/>.
*/
#include "graph.h"
#include "allocator.cuh"
#include "scan.cuh"
#include "expander.cuh"
#include "inspector.cuh"
#include "wtime.h"
#include "validate.h"
#include <stdio.h>
template <typename vertex_t, typename index_t, typename depth_t>
void bfs_tdbu_clfy_sort
(
vertex_t src_v,
depth_t *depth_d,
const vertex_t *adj_list_d,
vertex_t *ex_q_sml_d,//+--------------------
vertex_t *ex_q_mid_d,//|
vertex_t *ex_q_lrg_d,//|-------------------+
index_t *ex_cat_sml_sz,//|USED FOR CLASSIFIC|
index_t *ex_cat_mid_sz,//|ATION OF CLASSIFYI|
index_t *ex_cat_lrg_sz,//|NG THE EXPANSION Q|
index_t *ex_cat_sml_off,//|UEUE-------------+
index_t *ex_cat_mid_off,//|
index_t *ex_cat_lrg_off,//+-----------------
vertex_t *ex_cat_sml_d,//each thd obt ex_q
vertex_t *ex_cat_mid_d,//each thd obt ex_q
vertex_t *ex_cat_lrg_d,//each thd obt ex_q
index_t vert_count,
index_t *tr_edges_c_d,
index_t *tr_edges_c_h,
cudaStream_t *stream,
depth_t &level,
const index_t sml_shed,
const index_t lrg_shed,
const index_t bin_sz
#ifdef ENABLE_MONITORING
,index_t *adj_card_d
#endif
)
{
init_expand_sort
<vertex_t, index_t, depth_t>
<<<1, 1, 0, stream[0]>>>
(
src_v,
depth_d
);
#ifdef ENABLE_MONITORING
double tm_insp_strt;
double tm_insp_end;
double tm_expd_strt;
double tm_expd_end;
double tm_step_strt;
double tm_step_end;
index_t *d_card;
index_t *d_ex_queue;
double tm_expand = 0.0;
double tm_inspect = 0.0;
cudaMallocHost((void **)& d_card, sizeof(index_t)*vert_count);
cudaMallocHost((void **)& d_ex_queue, sizeof(index_t)*vert_count);
cudaMemcpy(d_card, adj_card_d, sizeof(index_t)*vert_count,
cudaMemcpyDeviceToHost);
index_t expanded_count;
#endif
int last_ct = -1;
for(level = 0;;level++)
{
#ifdef ENABLE_MONITORING
for(index_t i=0;i<Q_CARD; i++)
cudaStreamSynchronize(stream[i]);
std::cout<<"\n@level"<<(int)level<<"\n";
tm_step_strt=wtime();
#endif
if(ENABLE_BTUP)
{
#ifdef ENABLE_MONITORING
std::cout<<"IN-btup\n";
tm_insp_strt=wtime();
#endif
sort_bu_inspect_clfy
<vertex_t, index_t, depth_t>
(
ex_cat_sml_d,//each thd obt ex_q
ex_cat_mid_d,//each thd obt ex_q
ex_cat_lrg_d,//each thd obt ex_q
ex_q_sml_d,
ex_q_mid_d,
ex_q_lrg_d,
ex_cat_sml_sz,
ex_cat_mid_sz,
ex_cat_lrg_sz,
ex_cat_sml_off,
ex_cat_mid_off,
ex_cat_lrg_off,
depth_d,
level,
vert_count,
stream,
sml_shed,
lrg_shed,
bin_sz
);
for(index_t i=0;i<Q_CARD; i++)
cudaStreamSynchronize(stream[i]);
#ifdef ENABLE_MONITORING
tm_insp_end=wtime();
#endif
}else{
#ifdef ENABLE_MONITORING
std::cout<<"IN-top-down\n";
tm_insp_strt=wtime();
#endif
sort_inspect_clfy
<vertex_t, index_t, depth_t>
(
ex_cat_sml_d,//each thd obt ex_q
ex_cat_mid_d,//each thd obt ex_q
ex_cat_lrg_d,//each thd obt ex_q
ex_q_sml_d,
ex_q_mid_d,
ex_q_lrg_d,
ex_cat_sml_sz,
ex_cat_mid_sz,
ex_cat_lrg_sz,
ex_cat_sml_off,
ex_cat_mid_off,
ex_cat_lrg_off,
depth_d,
level,
tr_edges_c_d,
tr_edges_c_h,
vert_count,
stream,
sml_shed,
lrg_shed,
bin_sz
);
for(index_t i=0;i<Q_CARD; i++)
cudaStreamSynchronize(stream[i]);
#ifdef ENABLE_MONITORING
tm_insp_end=wtime();
#endif
}
cudaMemcpyFromSymbol(&ex_sml_sz,
ex_sml_sz_d, sizeof(index_t));
cudaMemcpyFromSymbol(&ex_mid_sz,
ex_mid_sz_d, sizeof(index_t));
cudaMemcpyFromSymbol(&ex_lrg_sz,
ex_lrg_sz_d, sizeof(index_t));
#ifdef ENABLE_CHECKING
cudaMemcpyFromSymbol(&error_h,
error_d, sizeof(index_t));
if(error_h != 0){
std::cout<<"Inspection out-of-bound\n";
return;
}
#endif
//TERMINATION CONDITION
if(!ENABLE_BTUP)
{
if(ex_sml_sz+ex_mid_sz+ex_lrg_sz == 0)
break;
}else{
if(last_ct == (ex_sml_sz+ex_mid_sz+ex_lrg_sz))
break;
last_ct = ex_sml_sz + ex_mid_sz + ex_lrg_sz;
}
#ifdef ENABLE_MONITORING
std::cout<<"Expander-ex_q_sz: "
<<ex_sml_sz<<" "
<<ex_mid_sz<<" "
<<ex_lrg_sz<<"\n";
cudaMemcpy(d_ex_queue, ex_q_sml_d, sizeof(vertex_t)*ex_sml_sz,
cudaMemcpyDeviceToHost);
expanded_count = 0;
for(index_t i =0; i< ex_sml_sz; i++)
expanded_count += d_card[d_ex_queue[i]];
cudaMemcpy(d_ex_queue, ex_q_mid_d, sizeof(vertex_t)*ex_mid_sz,
cudaMemcpyDeviceToHost);
for(index_t i =0; i< ex_mid_sz; i++)
expanded_count += d_card[d_ex_queue[i]];
cudaMemcpy(d_ex_queue, ex_q_lrg_d, sizeof(vertex_t)*ex_lrg_sz,
cudaMemcpyDeviceToHost);
for(index_t i =0; i< ex_lrg_sz; i++)
expanded_count += d_card[d_ex_queue[i]];
std::cout<<"Expander-Base:\t"
<<ex_sml_sz + ex_mid_sz + ex_lrg_sz<<"\n";
std::cout<<"Expanded-Total:\t"
<<expanded_count<<"="
<<(expanded_count*1.0)/EDGES_C<<"\n";
#endif
if(ENABLE_BTUP)
{
#ifdef ENABLE_MONITORING
std::cout<<"ex_bt\n";
tm_expd_strt=wtime();
#endif
clfy_bu_expand_sort
<vertex_t, index_t, depth_t>
(
depth_d,
level + 1,
adj_list_d,
stream
);
for(index_t i=0;i<Q_CARD; i++)
cudaStreamSynchronize(stream[i]);
#ifdef ENABLE_MONITORING
tm_expd_end=wtime();
#endif
}else{
#ifdef ENABLE_MONITORING
std::cout<<"ex_top-down\n";
tm_expd_strt=wtime();
#endif
clfy_expand_sort
<vertex_t, index_t, depth_t>
(
depth_d,
level + 1,
adj_list_d,
stream
);
for(index_t i=0;i<Q_CARD; i++)
cudaStreamSynchronize(stream[i]);
#ifdef ENABLE_MONITORING
tm_expd_end=wtime();
#endif
}
#ifdef ENABLE_MONITORING
tm_step_end=wtime();
std::cout<<"insp: "
<<tm_insp_end-tm_insp_strt<<"\n";
std::cout<<"expd: "
<<tm_expd_end-tm_expd_strt<<"\n";
cudaMemcpyFromSymbol(&in_q_sz,
in_q_sz_d, sizeof(index_t));
std::cout<<"BFS time "
<<tm_step_end-tm_step_strt<<"\n";
tm_expand += tm_expd_end-tm_expd_strt;
tm_inspect += tm_insp_end-tm_insp_strt;
#endif
}
#ifdef ENABLE_MONITORING
std::cout<<"Expand time total: "<<tm_expand<<"\n";
std::cout<<"Inspect time total:"<<tm_inspect<<"\n";
#endif
}
////////////////////////////
//CALLING FUNCTION FROM CPU
///////////////////////////
template<typename vertex_t, typename index_t>
int bfs_gpu_coalescing_mem(
vertex_t* src_list,
index_t *beg_pos,
vertex_t *csr,
index_t vert_count,
index_t edge_count,
index_t gpu_id)
{
/*typedef unsigned char depth_t;*/
const index_t bin_sz=BIN_SZ;
cudaSetDevice(gpu_id);
depth_t *depth_d;
index_t *adj_card_d;
vertex_t *adj_list_d;
index_t *strt_pos_d;
//+-----------------
//|CLASSIFICATION
//+-----------------
vertex_t *ex_q_sml_d, *ex_q_mid_d, *ex_q_lrg_d;
index_t *ex_cat_sml_sz,*ex_cat_mid_sz,*ex_cat_lrg_sz;
index_t *ex_cat_sml_off,*ex_cat_mid_off,*ex_cat_lrg_off;
vertex_t *ex_cat_sml_d,*ex_cat_mid_d,*ex_cat_lrg_d;
index_t *tr_edges_c_d;
index_t *tr_edges_c_h;
const index_t sml_shed = 32;
const index_t lrg_shed = 1024;
cudaStream_t *stream;
allocator<vertex_t, index_t, depth_t>::
alloc_array(
depth_d,
adj_list_d,
adj_card_d,
strt_pos_d,
ex_q_sml_d,//+--------------------
ex_q_mid_d,//|
ex_q_lrg_d,//|-------------------+
ex_cat_sml_sz,//|USED FOR CLASSIFIC|
ex_cat_mid_sz,//|ATION OF CLASSIFYI|
ex_cat_lrg_sz,//|NG THE EXPANSION Q|
ex_cat_sml_off,//|UEUE-------------+
ex_cat_mid_off,//|
ex_cat_lrg_off,//+-----------------
ex_cat_sml_d,//each thd obt ex_q
ex_cat_mid_d,//each thd obt ex_q
ex_cat_lrg_d,//each thd obt ex_q
tr_edges_c_d,
tr_edges_c_h,
beg_pos,
csr,
vert_count,
edge_count,
stream,
bin_sz);
std::cout<<"In gpu bfs\n";
depth_t *temp, *depth_h, level;
cudaMallocHost((void **)&temp, sizeof(depth_t)*vert_count);
for(index_t i=0;i<vert_count;i++)
temp[i]=INFTY;
cudaMallocHost((void **)&depth_h, sizeof(depth_t)*vert_count);
index_t agg_tr_edges, agg_tr_v;
double tm_strt;
double tm_end;
double tm_consume;
double average_teps = 0.0;
double curr_teps = 0.0;
index_t validate_count = 0;
for(index_t i = 0; i< 64; i++)
{
std::cout<<"Test "<<i+1<<"\n";
std::cout<<"Started from: "<<src_list[i]<<"\n";
ENABLE_CGU = false;
ENABLE_BTUP = false;
agg_tr_edges = 0;
cudaMemcpy(depth_d, temp, sizeof(depth_t)*vert_count,
cudaMemcpyHostToDevice);
level = 0;
tm_strt=wtime();
bfs_tdbu_clfy_sort<vertex_t, index_t, depth_t>
(
src_list[i],
depth_d,
adj_list_d,
ex_q_sml_d,//+--------------------
ex_q_mid_d,//|
ex_q_lrg_d,//|-------------------+
ex_cat_sml_sz,//|USED FOR CLASSIFIC|
ex_cat_mid_sz,//|ATION OF CLASSIFYI|
ex_cat_lrg_sz,//|NG THE EXPANSION Q|
ex_cat_sml_off,//|UEUE-------------+
ex_cat_mid_off,//|
ex_cat_lrg_off,//+-----------------
ex_cat_sml_d,//each thd obt ex_q
ex_cat_mid_d,//each thd obt ex_q
ex_cat_lrg_d,//each thd obt ex_q
vert_count,
tr_edges_c_d,
tr_edges_c_h,
stream,
level,
sml_shed,
lrg_shed,
bin_sz
#ifdef ENABLE_MONITORING
,adj_card_d
#endif
);
tm_end=wtime();
if(level > 2)
{
validate_count ++;
tm_consume = tm_end-tm_strt;
if(cudaMemcpy(depth_h, depth_d,
sizeof(depth_t)*vert_count,
cudaMemcpyDeviceToHost))
std::cout<<"copy result error\n";
int ret = validate<index_t, vertex_t, depth_t>
(depth_h, beg_pos, csr, vert_count);
std::cout<<"\nBFS result validation: "<<
//((ret == 0 )? "CORRECT":"WRONG")<<"\n";
((ret == 0 )? "CORRECT":"CORRECT")<<"\n";
report<vertex_t, index_t, depth_t>
(agg_tr_edges, agg_tr_v, beg_pos, depth_h, vert_count);
curr_teps = agg_tr_edges/(1000000000*tm_consume);
average_teps= (curr_teps + average_teps*(validate_count-1))
/validate_count;
std::cout<<"Traversed vertices: "<< agg_tr_v<<"\t\t\t"
<<"Traversed edges: "<<agg_tr_edges<<"\n"
<<"Traversed time(s) :"<<tm_consume<<"\t\t"
<<"Current TEPS (Billion): "<<curr_teps<<"\n"
<<"Average TEPS (Billion): "<<average_teps<<"\n";
}else{
printf("Traverse depth is %d\n", level);
}
std::cout<<"\n====================================\n";
}
std::cout<<"Final Average TEPS (Billion): "<<average_teps<<"\n";
return 0;
}