-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ixi.py
136 lines (104 loc) · 4.76 KB
/
run_ixi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import functools
import argparse
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from diffusion.diffusion_tf.diffusion_utils import get_beta_schedule, GaussianDiffusion2
from diffusion.diffusion_tf.models.model_singlecoil import SSDiffRecon_Model
from diffusion.diffusion_tf.gpu_utils import gpu_tpu_utils_ixi as gpu_utils
from diffusion.diffusion_tf.gpu_utils import datasets
import partial_masks
class Model(gpu_utils.Model):
def __init__(self, *, model_mean_type, model_var_type, betas: np.ndarray):
self.diffusion = GaussianDiffusion2(
betas=betas, model_mean_type=model_mean_type, model_var_type=model_var_type)
self.model_class = SSDiffRecon_Model()
def get_trainables(self):
return self.model_class.get_trainable_variables()
def _denoise(self, x, us_im, t, y, mask):
B = x.shape[0]
assert x.dtype == tf.float32
assert t.shape == [B] and t.dtype in [tf.int32, tf.int64]
out = self.model_class.model(us_im=us_im, noisy_sample=x, label=y, time=t, mask=mask)
return out
def train_fn(self, us_im, y, mask, alpha=0.95):
B = us_im.shape[0]
us_im = (us_im - 0.5) * 2 # change range of us images to [-1, 1]
t = tf.random_uniform([B], 0, self.diffusion.num_timesteps, dtype=tf.int32)
new_mask, loss_mask = partial_masks.partial_mask_creator(mask=mask,alpha=alpha)
new_us_im = partial_masks.us_im_creator_ixi(new_mask, us_im)
x_start = new_us_im
losses = self.diffusion.training_losses_ixi_ssdu(
denoise_fn=functools.partial(self._denoise, us_im=new_us_im, y=y, mask=new_mask),
x_start=x_start,
t=t,
us_im=us_im,
loss_mask=loss_mask)
assert losses.shape == t.shape == [B]
return {'loss': tf.reduce_mean(losses)}
def samples_fn(self, dummy_noise, y, us_im, mask):
us_im = (us_im - 0.5) *2 # change range of us images to [-1, 1]
sample = self.diffusion.p_sample_loop(
denoise_fn=functools.partial(self._denoise, y=y, us_im=us_im, mask=mask),
shape=dummy_noise.shape.as_list(),
us_im=us_im,
noise_fn=tf.random_normal)
return {'samples': sample}
def evaluation(args):
ds = datasets.get_dataset(args.dataset, batch_size=args.batch_size, phase='test')
worker = gpu_utils.EvalWorker(
model_constructor=lambda: Model(
model_mean_type='xstart',
model_var_type='fixedlarge',
betas=get_beta_schedule(
args.beta_schedule, beta_start=args.beta_start, beta_end=args.beta_end, num_diffusion_timesteps=args.num_diffusion_timesteps
),
),
total_bs=args.batch_size, dataset=ds)
worker.run(logdir=args.results_dir)
def train(args):
ds = datasets.get_dataset(args.dataset, batch_size=args.batch_size, phase='train')
gpu_utils.run_training(
exp_name=args.exp_name,
model_constructor=lambda: Model(
model_mean_type='xstart',
model_var_type='fixedlarge',
betas=get_beta_schedule(
args.beta_schedule, beta_start=args.beta_start, beta_end=args.beta_end, num_diffusion_timesteps=args.num_diffusion_timesteps
),
),
optimizer=args.optimizer, total_bs=args.batch_size, lr=args.lr, warmup=args.warmup, grad_clip=args.grad_clip,
train_input_fn=ds.train_input_fn, log_dir=args.results_dir
)
def get_args_parser():
parser = argparse.ArgumentParser('SSDiffRecon train and evaluate for IXI', add_help=False)
parser.add_argument('--train', action='store_true', default=False)
parser.add_argument('--eval', action='store_true', default=False)
parser.add_argument('--results_dir', type=str, default="./results/")
parser.add_argument('--exp_name', type=str, default="")
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--dataset', type=str, default='ixi')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--optimizer', type=str, default='adam')
parser.add_argument('--grad_clip', type=float, default=1.)
parser.add_argument('--lr', type=float, default=2e-3)
parser.add_argument('--warmup', type=int, default=5000)
parser.add_argument('--num_diffusion_timesteps', type=int, default=1000)
parser.add_argument('--beta_start', type=float, default=0.0001)
parser.add_argument('--beta_end', type=int, default=0.02)
parser.add_argument('--beta_schedule', type=str, default='linear')
parser.add_argument('--eval_checkpoint',type=str,default='')
return parser
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
if args.train:
train(args)
elif args.eval:
args.num_diffusion_timesteps=5
evaluation(args)
else:
print("specify the mode")