-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_centralized.py
149 lines (123 loc) · 6.28 KB
/
train_centralized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import time
from options.train_options import TrainOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
import numpy as np, h5py
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
import random
import torch
print(torch.__version__)
import sys
import os
os.environ['QT_QPA_PLATFORM']='offscreen'
import matplotlib.pyplot as plt
def print_log(logger,message):
print(message, flush=True)
if logger:
logger.write(str(message) + '\n')
def one_epoch(opt, dataset, model,one_hot, visualizer, total_steps, dataset_val, L1_avg, psnr_avg, ssim_avg, dset):
opt.phase='train'
epoch_iter = 0
iter_data_time = time.time()
epoch_start_time = time.time()
for i, data in enumerate(dataset):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data, one_hot, dset)
model.optimize_parameters()
opt.display_freq = 1
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
temp_visuals=model.get_current_visuals()
if temp_visuals['real_A'].shape[2]==1:
temp_visuals['real_A']=np.concatenate((temp_visuals['real_A'],np.zeros((temp_visuals['real_A'].shape[0],temp_visuals['real_A'].shape[1],2),dtype=np.uint8)),axis=2)
elif temp_visuals['real_A'].shape[2]==2:
temp_visuals['real_A']=np.concatenate((temp_visuals['real_A'],np.zeros((temp_visuals['real_A'].shape[0],temp_visuals['real_A'].shape[1],1),dtype=np.uint8)),axis=2)
else:
temp_visuals['real_A']=temp_visuals['real_A'][:,:,0:3]
if temp_visuals['fake_B'].shape[2]==2:
temp_visuals['fake_B']=np.concatenate((temp_visuals['fake_B'],np.zeros((temp_visuals['fake_B'].shape[0],temp_visuals['fake_B'].shape[1],1),dtype=np.uint8)),axis=2)
temp_visuals['real_B']=np.concatenate((temp_visuals['real_B'],np.zeros((temp_visuals['real_B'].shape[0],temp_visuals['real_B'].shape[1],1),dtype=np.uint8)),axis=2)
temp_visuals['real_B']=temp_visuals['real_B'][:,:,0:3]
temp_visuals['fake_B']=temp_visuals['fake_B'][:,:,0:3]
visualizer.display_current_results(temp_visuals, epoch, save_result)#,i)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
if total_steps % opt.save_latest_freq == 0:
print(dset + ': saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save(dset + '_latest')
iter_data_time = time.time()
#Validation step
logger = open(os.path.join(save_dir, 'log.txt'), 'a')
print(opt.dataset_mode)
opt.phase='val'
for i, data_val in enumerate(dataset_val):
model.set_input(data_val, one_hot, dset)
model.test()
fake_im=model.fake_B.cpu().data.numpy()
real_im=model.real_B.cpu().data.numpy()
real_im=real_im*0.5+0.5
fake_im=fake_im*0.5+0.5
fake_im[fake_im<0]=0
L1_avg[epoch-1,i]=abs(fake_im-real_im).mean()
psnr_avg[epoch-1,i]=psnr(real_im/real_im.max(), fake_im/fake_im.max(), data_range=1)
ssim_avg[epoch-1,i]=ssim(real_im[0, 0]/real_im.max(), fake_im[0, 0]/fake_im.max(), data_range=1)
if epoch % opt.save_epoch_freq == 0:
print(dset + ': saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save(dset + '_latest')
print_log(logger,'Epoch %3d l1_avg_loss: %.5f mean_psnr: %.3f std_psnr:%.3f mean_ssim: %.3f' % \
(epoch, np.mean(L1_avg[epoch-1]), np.mean(psnr_avg[epoch-1]), np.std(psnr_avg[epoch-1]), 100 * np.mean(ssim_avg[epoch-1])))
print_log(logger,'')
logger.close()
f = h5py.File(opt.checkpoints_dir+opt.name+'.mat', "w")
f.create_dataset(dset + '_L1_avg', data=L1_avg)
f.create_dataset(dset + '_psnr_avg', data=psnr_avg)
f.close()
print(dset + ': End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
return opt, model, total_steps, L1_avg, psnr_avg, ssim_avg
if __name__ == '__main__':
opt = TrainOptions().parse()
#Training data
opt.phase='train'
opt.dataset_name = "combined"
data_loader_MRNet = CreateDataLoader(opt)
dataset_MRNet = data_loader_MRNet.load_data()
dataset_size = len(data_loader_MRNet)
print('#'+opt.dataset_name+' training images = %d' % dataset_size)
##logger ##
save_dir = os.path.join(opt.checkpoints_dir, opt.name)
logger = open(os.path.join(save_dir, 'log.txt'), 'w+')
print_log(logger,opt.name)
logger.close()
#validation data
opt.phase='val'
data_loader_val_MRNet = CreateDataLoader(opt)
dataset_val_MRNet = data_loader_val_MRNet.load_data()
dataset_size_val = len(data_loader_val_MRNet)
print('#'+opt.dataset_name+' validation images = %d' % dataset_size_val)
L1_avg_MRNet = np.zeros([opt.niter + opt.niter_decay,len(dataset_val_MRNet)])
psnr_avg_MRNet = np.zeros([opt.niter + opt.niter_decay,len(dataset_val_MRNet)])
ssim_avg_MRNet = np.zeros([opt.niter + opt.niter_decay,len(dataset_val_MRNet)])
model_MRNet = create_model(opt)
visualizer_MRNet = Visualizer(opt)
MRNet_netG_SD = model_MRNet.netG.state_dict()
total_steps = 0
one_hot_MRNet = torch.tensor([[1.0, 0.0,0.0,0.0]], requires_grad=False ).cuda(opt.gpu_ids[0])
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
#Epoch number
opt.epoch_number=epoch+1
#Training step
_, model_MRNet, _, L1_avg_MRNet, psnr_avg_MRNet, ssim_avg_MRNet = one_epoch(opt, dataset_MRNet, model_MRNet,one_hot_MRNet, visualizer_MRNet, total_steps,
dataset_val_MRNet, L1_avg_MRNet, psnr_avg_MRNet, ssim_avg_MRNet, opt.dataset_name)