-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfijiscidb.R
184 lines (113 loc) · 6.07 KB
/
fijiscidb.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
install.packages("gdalUtils") # to call gdal_translate without system()
devtools::install_github("Paradigm4/SciDBR", ref="laboratory") # this experimental version one seems to work...
library(raster)
library(gdalUtils)
library(scidb) # this is not neccessary to load the data but to rearrange to 4d afterwards
SCIDB_ARRAYNAME = "fiji" # <-- this is the 3d array to be created
SCIDB_HOST = "gis-bigdata.uni-muenster.de"
SCIDB_PORT = 51511
SCIDB_USER = "menglu"
SCIDB_PW = "EvaQuT6vUa6Gf27L"
######################################################################################
# 1. convert R raster to temporal snapshot files readable by GDAL (e.g. GeoTIFF, .img, ...)
######################################################################################
load("allbandsfigi2.Rdata")
landsat.stacked = stack(allbandsfigi)
# subset dataset by day (all bands of specific dates in one stack) and store as files
# this might take some minutes for 150 files...
datestrings = unique(substr(names(landsat.stacked ),10,16))
raster.subsets.bydate = lapply(datestrings,function(d) {
writeRaster(subset(landsat.stacked, grep(d,x=names(landsat.stacked))), format="GTiff", filename=paste(d,sep=""),NAflag=-1, dataType="INT2S",overwrite=TRUE) # use whatever format works best, fastest
})
######################################################################################
# 2. apply gdal_translate on temporal snapshot files (as they also come originally from data providers)
######################################################################################
files = list.files(pattern="*.tif")
# We don't want to pass this information in every single gdal_translate call und thus set it
# as environment variables
Sys.setenv(SCIDB4GDAL_HOST=SCIDB_HOST,
SCIDB4GDAL_PORT=SCIDB_PORT,
SCIDB4GDAL_USER=SCIDB_USER,
SCIDB4GDAL_PASSWORD=SCIDB_PW)
# load first image to SciDB
cat (paste(format(Sys.time()),"Loading first image to SciDB ... "))
gdal_translate(src_dataset = files[1],
dst_dataset = paste("SCIDB:array=",SCIDB_ARRAYNAME, sep = ""),
of = "SciDB",
co = list("t=2000-05-15","type=STS","dt=P381H", "CHUNKSIZE_SP=1000", "CHUNKSIZE_T=1"))
cat("Done.\n")
# OPTIONAL: test, whether this works
#library(scidb)
#scidbconnect(protocol="https", auth_type="digest", host = "gis-bigdata.uni-muenster.de",username = "scidb",password = "xaf62bv9d3qvske3xe78h2tue4g66ktu",port = 51511)
#x = scidb(SCIDB_ARRAYNAME)
### END TEST
# load other images to scidb and add to existing based on date
for (i in 2:length(files)) {
cat (paste(format(Sys.time()),"Loading image", i, "of", length(files), "~", round(100*i / length(files) ), "% ... "))
d = strptime(substr(files[i],1,7), format="%Y%j")
# dt=381H
gdal_translate(src_dataset = files[i],
dst_dataset = paste("SCIDB:array=",SCIDB_ARRAYNAME, sep = ""),
of = "SciDB",
co = list("CHUNKSIZE_SP=1000", "CHUNKSIZE_T=1", "type=ST", "dt=P381H", paste("t=",format(d),sep="")), verbose = TRUE)
cat("Done.\n")
}
cat("\nSciDB load done.\n")
# rearrange to 4d
scidbconnect(auth_type="digest", protocol = "https", host=SCIDB_HOST,port = SCIDB_PORT,username = SCIDB_USER,password = SCIDB_PW)
fiji=scidb(SCIDB_ARRAYNAME)
iquery("store(unfold(fiji),fiji4d)",return=T)
iquery("store(cast(fiji4d, <reflectance:double NULL DEFAULT null> [y=0:659,1000,0,x=0:659,1000,0,t=0:*,1,0,band=0:5,6,0]), fiji4d1)")
iquery("show(fiji4d1)",return=T)
iquery("store(subarray(figi4d, 0, 0,0,0, 99, 99,149, 5), fijisub)")
iquery("store(reshape(figi4dsub, <band1:double>
[xy=0:9999,512,0, t=0:149,512,0,unfold_3=0:5,6,0]), fijisub3d)")
#array3d_schema= <reflectance:double>[xy=0:258,512,0, t=0:149,512,0,band=0:5,6,0]
#array2d_schema= <reflectance:double>[xyt=0:38851,512,0 ,band=0:5,6,0]
(349 - 312 + 1) * (200 - 184 + 1) * (150)
iquery("store(
reshape(
subarray(fiji4d1, 312, 184, 0,0, 349, 200, 149, 5 ),
<reflectance:double>[xyt=1:96900,512,0 ,band=0:5,6,0]),
d2array)")
iquery("show(d2array)",return=T)
#\#\#\# Centering and scaling the data
# Average on column (band as variable), standard deviation on column
iquery("store(aggregate(d2array,avg(reflectance), band),b_ave)")
iquery("store(aggregate(d2array,stdev(reflectance), band),b_var)")
iquery("show(b_ave)",return=T)
iquery("show(b_var)",return=T)
## Cross join the mean to the array
iquery("store(cross_join(d2array,b_ave, d2array.band, b_ave.band),bjoin)")
iquery("show(bjoin)",return=T)
iquery("store(cross_join(bjoin, b_var, bjoin.band, b_var.band),b_join_mean_var)")
iquery("show(b_join_mean_var)",return=T)
## Center the data by substracting the average, scale the data by dividing the standard deviation
iquery("store(apply(b_join_mean_var, censcale, (reflectance - reflectance_avg)/reflectance_stdev), censcale_arr)")
iquery("show(censcale_arr)",return=T)
## Project the centered data
iquery("store(project(censcale_arr, censcale), censcale_p)")
#Migrate the coordinate to (0,0)
#iquery('store(subarray(censcale_pro, subschema),censcapro1)')
## Transpose the array
iquery('store(transpose(censcale_p),b_censcale_p)')
iquery("show(b_censcale_p)",return=T)
## Compute PCA (1)
iquery("store(repart(subarray(b_censcale_p,0,1,5,96900),<censcale:double NULL DEFAULT null> [band=0:5,32,0,xyt=0:96899,32,0]),b_censcale_p_zero_repart)")
iquery("store(gesvd(b_censcale_p_zero_repart,'U'), b_svd_U)")
iquery("scan(b_svd_U)", return = T)
svd("b_censcale_p_zero")
fiji.svd = scidb("b_svd_U")[]
fit<-prcomp(na.omit( d2array ),center=TRUE,scale.=TRUE)
re<-length(fit$rotation[,1])
variable.groups <- c(rep(1, re), rep(2, re), rep(3, re),rep(4,re))
str(melted)
T1<-rep(time1[which(a<50)], 4)
melted <- cbind(variable.groups, melt(fit$rotation[,1:4]), T1)
barplot <- ggplot(data=fiji.svd) +
geom_bar(aes(x=band, y=u, fill=i),position = "identity", show_guide=F,stat="identity") +
facet_wrap(~i)+ theme(legend.position="none")+
ggtitle(paste("Variable: time, Observation: spectral spatial points" ))+
theme(axis.text.x = element_text(angle = 45, hjust = 1))
plot(barplot )
\end{alltt}