-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathflow_test.py
178 lines (125 loc) · 5.74 KB
/
flow_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import unittest
import torch
import flows as fnn
EPS = 1e-5
BATCH_SIZE = 32
NUM_INPUTS = 11
NUM_HIDDEN = 64
mask = torch.arange(0, NUM_INPUTS) % 2
mask = mask.unsqueeze(0)
class TestFlow(unittest.TestCase):
def testCoupling(self):
m1 = fnn.FlowSequential(
fnn.CouplingLayer(NUM_INPUTS, NUM_HIDDEN, mask))
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'CouplingLayer Det is not zero.')
self.assertTrue((x - z).abs().max() < EPS, 'CouplingLayer is wrong')
def testInv(self):
m1 = fnn.FlowSequential(fnn.InvertibleMM(NUM_INPUTS))
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'InvMM Det is not zero.')
self.assertTrue((x - z).abs().max() < EPS, 'InvMM is wrong.')
def testSigmoid(self):
m1 = fnn.FlowSequential(fnn.Sigmoid())
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'Sigmoid Det is not zero.')
self.assertTrue((x - z).abs().max() < EPS, 'Sigmoid is wrong.')
def testActNorm(self):
m1 = fnn.FlowSequential(fnn.ActNorm(NUM_INPUTS))
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'ActNorm Det is not zero.')
self.assertTrue((x - z).abs().max() < EPS, 'ActNorm is wrong.')
# Second run.
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'ActNorm Det is not zero for the second run.')
self.assertTrue((x - z).abs().max() < EPS,
'ActNorm is wrong for the second run.')
def testBatchNorm(self):
m1 = fnn.FlowSequential(fnn.BatchNormFlow(NUM_INPUTS))
m1.train()
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'BatchNorm Det is not zero.')
self.assertTrue((x - z).abs().max() < EPS, 'BatchNorm is wrong.')
# Second run.
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'BatchNorm Det is not zero for the second run.')
self.assertTrue((x - z).abs().max() < EPS,
'BatchNorm is wrong for the second run.')
m1.eval()
m1 = fnn.FlowSequential(fnn.BatchNormFlow(NUM_INPUTS))
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'BatchNorm Det is not zero in eval.')
self.assertTrue((x - z).abs().max() < EPS,
'BatchNorm is wrong in eval.')
def testSequential(self):
m1 = fnn.FlowSequential(
fnn.ActNorm(NUM_INPUTS), fnn.InvertibleMM(NUM_INPUTS),
fnn.CouplingLayer(NUM_INPUTS, NUM_HIDDEN, mask))
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'Sequential Det is not zero.')
self.assertTrue((x - z).abs().max() < EPS, 'Sequential is wrong.')
# Second run.
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'Sequential Det is not zero for the second run.')
self.assertTrue((x - z).abs().max() < EPS,
'Sequential is wrong for the second run.')
def testSequentialBN(self):
m1 = fnn.FlowSequential(
fnn.BatchNormFlow(NUM_INPUTS), fnn.InvertibleMM(NUM_INPUTS),
fnn.CouplingLayer(NUM_INPUTS, NUM_HIDDEN, mask))
m1.train()
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'Sequential BN Det is not zero.')
self.assertTrue((x - z).abs().max() < EPS, 'Sequential BN is wrong.')
# Second run.
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'Sequential BN Det is not zero for the second run.')
self.assertTrue((x - z).abs().max() < EPS,
'Sequential BN is wrong for the second run.')
m1.eval()
# Eval run.
x = torch.randn(BATCH_SIZE, NUM_INPUTS)
y, logdets = m1(x)
z, inv_logdets = m1(y, mode='inverse')
self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
'Sequential BN Det is not zero for the eval run.')
self.assertTrue((x - z).abs().max() < EPS,
'Sequential BN is wrong for the eval run.')
if __name__ == "__main__":
unittest.main()