-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGM.py
253 lines (221 loc) · 10.6 KB
/
GM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import numpy as np
import pandas as pa
from sklearn.metrics import pairwise_distances
from scipy.sparse import csr_matrix
from scipy.sparse import spdiags
from scipy import stats
from scipy.stats import multivariate_normal
from copy import deepcopy
from MICTI import Kmeans
class GM:
def __init__(self, data,k,geneNames,cellNames,initial_kmean_Model=None):
self.data=data
self.k=k
self.geneNames=geneNames
self.cellNames=cellNames
self.mean=None
self.weight=None
self.covs=None
self.out=None
self.initial_kmean_Model=initial_kmean_Model
self.cluster_assignment=None
self.setMeans()
self.setWeights()
self.creatCovMat()
self.heterogeneity=None
return
def diag(self,array):
n = len(array)
return spdiags(array, 0, n, n)
def logpdf_diagonal_gaussian(self, x, mean, cov):
'''
Compute logpdf of a multivariate Gaussian distribution with diagonal covariance at a given point x.
A multivariate Gaussian distribution with a diagonal covariance is equivalent
to a collection of independent Gaussian random variables.
x should be a sparse matrix. The logpdf will be computed for each row of x.
mean and cov should be given as 1D numpy arrays
mean[i] : mean of i-th variable
cov[i] : variance of i-th variable'''
n = x.shape[0]
dim = x.shape[1]
assert(dim == len(mean) and dim == len(cov))
# multiply each i-th column of x by (1/(2*sigma_i)), where sigma_i is sqrt of variance of i-th variable.
scaled_x = x.dot(self.diag(1./(2*np.sqrt(cov))) )
# multiply each i-th entry of mean by (1/(2*sigma_i))
scaled_mean = mean/(2*np.sqrt(cov))
# sum of pairwise squared Eulidean distances gives SUM[(x_i - mean_i)^2/(2*sigma_i^2)]
return -np.sum(np.log(np.sqrt(2*np.pi*cov))) - pairwise_distances(scaled_x, [scaled_mean], 'euclidean').flatten()**2
def initial_cluster_assignment(self):
initial_kmean_Model=Kmeans.Kmeans(self.data, self.k, self.geneNames, self.cellNames)
return initial_kmean_Model
def creatCovMat(self):
num_clusters=len(self.means)
covs = []
for i in range(self.k):
member_rows = self.data[self.cluster_assignment==i]
cov = (member_rows.multiply(member_rows) - 2*member_rows.dot(self.diag(self.means[i]))).sum(axis=0).A1 / member_rows.shape[0] \
+ self.means[i]**2
cov[cov < 1e-8] = 1e-8
covs.append(cov)
self.covs=covs
return covs
def setMeans(self):
#np.random.seed(5)
num_clusters = self.k
# Use scikit-learn's k-means to simplify workflow
#kmeans_model = KMeans(n_clusters=num_clusters, n_init=5, max_iter=400, random_state=1, n_jobs=-1) # uncomment to use parallelism -- may break on your installation
if self.initial_kmean_Model == None:
kmeans_model = self.initial_cluster_assignment()
centroids, cluster_assignment = kmeans_model.kmeans(10)
else:
centroids=self.initial_kmean_Model.centroids
cluster_assignment=self.initial_kmean_Model.cluster_assignment
means = [centroid for centroid in centroids]
self.means=means
self.cluster_assignment=cluster_assignment
return
def setWeights(self):
num_docs = self.data.shape[0]
weights = []
for i in range(self.k):
# Compute the number of data points assigned to cluster i:
num_assigned = self.data[self.cluster_assignment==i,:].shape[0] # YOUR CODE HERE
w = float(num_assigned) / num_docs
weights.append(w)
self.weights=weights
return
def log_sum_exp(self,x, axis):
'''Compute the log of a sum of exponentials'''
x_max = np.max(x, axis=axis)
if axis == 1:
return x_max + np.log( np.sum(np.exp(x-x_max[:,np.newaxis]), axis=1) )
else:
return x_max + np.log( np.sum(np.exp(x-x_max), axis=0) )
def EM_for_high_dimension(self,cov_smoothing=1e-5, maxiter=int(1e3), thresh=1e-4, verbose=False):
# cov_smoothing: specifies the default variance assigned to absent features in a cluster.
# If we were to assign zero variances to absent features, we would be overconfient,
# as we hastily conclude that those featurese would NEVER appear in the cluster.
# We'd like to leave a little bit of possibility for absent features to show up later.
n = self.data.shape[0]
dim = self.data.shape[1]
data=deepcopy(self.data)
mu = deepcopy(self.means)
Sigma = deepcopy(self.covs)
K = len(mu)
weights = np.array(self.weights)
ll = None
ll_trace = []
for i in range(maxiter):
# E-step: compute responsibilities
logresp = np.zeros((n,K))
for k in range(K):
logresp[:,k] = np.log(weights[k]) + self.logpdf_diagonal_gaussian(data, mu[k], Sigma[k])
ll_new = np.sum(self.log_sum_exp(logresp, axis=1))
if verbose:
print(ll_new)
logresp -= np.vstack(self.log_sum_exp(logresp, axis=1))
resp = np.exp(logresp)
counts = np.sum(resp, axis=0)
# M-step: update weights, means, covariances
weights = counts / np.sum(counts)
for k in range(K):
mu[k] = (self.diag(resp[:,k]).dot(data)).sum(axis=0)/counts[k]
mu[k] = mu[k].A1
Sigma[k] = self.diag(resp[:,k]).dot( data.multiply(data)-2*data.dot(self.diag(mu[k])) ).sum(axis=0) \
+ (mu[k]**2)*counts[k]
Sigma[k] = Sigma[k].A1 / counts[k] + cov_smoothing*np.ones(dim)
# check for convergence in log-likelihood
ll_trace.append(ll_new)
if ll is not None and (ll_new-ll) < thresh and ll_new > -np.inf:
ll = ll_new
break
else:
ll = ll_new
out = {'weights':weights,'means':mu,'covs':Sigma,'loglik':ll_trace,'resp':resp}
self.out=out
return out
def getResult(self):
return self.out
def compute_heterogeneity(self):
heterogeneity = 0.0
for i in range(self.k):
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = self.data[self.cluster_assignment==i, :]
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
# Compute distances from centroid to data points (RHS only)
distances = pairwise_distances(member_data_points, [self.getResult["means"][i]], metric='euclidean')
squared_distances = distances**2
heterogeneity += np.sum(squared_distances)
self.heterogeneity=heterogeneity
return heterogeneity
def getVisualization(self,dim=2,method="PCA"):
if method=="PCA":
if dim>3:
print("Please give at most three dimentions")
else:
svd = TruncatedSVD(n_components=dim)
svd_fit = svd.fit(self.data)
svdTransform=svd.fit_transform(self.data)
if dim==3:
fig=p.figure()
ax = p3.Axes3D(fig)
ax.scatter(svdTransform[:,0], svdTransform[:,1], svdTransform[:,2], c=self.cluster_assignment)
ax.set_xlabel("PCA1")
ax.set_ylabel("PCA2")
ax.set_zlabel("PCA3")
fig.add_axes(ax)
plt.show()
elif dim==2:
plt.scatter(svdTransform[:,0], svdTransform[:,1], c=self.cluster_assignment)
plt.xlabel("PCA1")
plt.ylabel("PCA2")
plt.suptitle("Gaussian mixture with k={0:d}".format(self.k), fontsize=8)
plt.show()
else:
print("dimentionality error")
elif method=="tsne":
if dim>3:
print("Please give at most three dimentions")
else:
svd = TruncatedSVD(n_components=50)
svd_fit = svd.fit(self.data)
svdTransformTsne=svd.fit_transform(self.data)
X_tsne=TSNE(n_components=dim, random_state=0)
x_tsne=X_tsne.fit_transform(svdTransformTsne)
if dim==3:
fig=p.figure()
ax = p3.Axes3D(fig)
ax.scatter(x_tsne[:,0], x_tsne[:,1], x_tsne[:,2], c=self.cluster_assignment)
ax.set_xlabel("tsne1")
ax.set_xlabel("tsne2")
ax.set_xlabel("tsne3")
fig.add_axes(ax)
p.show()
elif dim==2:
plt.scatter(x_tsne[:,0], x_tsne[:,1], c=self.cluster_assignment)
plt.xlabel("tsne1")
plt.ylabel("tsne2")
plt.suptitle("Gaussian mixture with k={0:d}".format(self.k), fontsize=8)
plt.savefig("GM_Plot.png", format="png")
plt.show()
else:
print("dimetionality error")
else:
print("Please give method==pca or method=tsne")
return None
def visualize_EM_clusters(self):
print('')
print('==========================================================')
num_clusters = len(self.out["means"])
for c in range(self.k):
print('Cluster {0:d}: Largest mean & variance in cluster '.format(c) + " ")
print('\n{0: <12}{1: <12}{2: <12}'.format('Gene', 'Mean', 'Variance'))
# The k'th element of sorted_word_ids should be the index of the word
# that has the k'th-largest value in the cluster mean. Hint: Use np.argsort().
sorted_word_ids = np.argsort(-self.out["means"][c]) # YOUR CODE HERE
print(np.sum(self.cluster_assignment==c))
for i in sorted_word_ids[:5]:
print('{0: <12}{1:<10.2e}{2:10.2e}'.format(self.geneNames[i],
self.out["means"][c][i],
self.out["covs"][c][i]))
print('\n==========================================================')