-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMARKERS.py
510 lines (433 loc) · 24.2 KB
/
MARKERS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
from . import Kmeans
from . import GM
from . import radarPlot
from . import heatmap
import matplotlib.pyplot as plt
import numpy as np
import pandas as pa
from scipy.sparse import csr_matrix, isspmatrix
from scipy.sparse import csgraph
from sklearn.preprocessing import normalize
from sklearn.metrics import pairwise_distances
import mpl_toolkits.mplot3d.axes3d as p3
import pylab as p
from sklearn.decomposition import TruncatedSVD
from sklearn.manifold import TSNE
import sys
import os
import time
from matplotlib.lines import Line2D
from matplotlib.pyplot import cm
from collections import Counter
from gprofiler import gprofiler
import copy
import operator
import scipy
import seaborn as sns
import random
from gensim.models import HdpModel,LdaModel
from sklearn import cluster
from sklearn.neighbors import kneighbors_graph
from sklearn import metrics
class MICTI:
def __init__(self,data,geneNames,cellNames,k=None,cluster_label=None,cluster_assignment=None, th=0,seed=None, ensembel=False, organisum="hsapiens"):
self.data=data
self.k=k
self.th=th
self.geneNames=geneNames
self.cellNames=cellNames
self.seed=seed
self.ensembl=ensembel
self.organsm=organisum
self.cluster_assignment=cluster_assignment
self.cluster_label=cluster_label
self.color=cluster_assignment
self.color_dict={}
self.data_ICF=self.ICF(self.data)
self.initialize_colors()
def get_cluster_assignment(self):
return self.cluster_assignment
def initialize_colors(self):
colors=['#ffe119','#0082c8','#f58231','#911eb4','#46f0f0','#f032e6','#d2f53c','#fabebe','#008080','#e6beff',
'#aa6e28','#fffac8','#800000','#aaffc3','#808000','#ffd8b1','#000080','#808080','#FFFFFF','#000000'][:self.k]
cell_type=pa.Series([self.cluster_label[j] for j in self.cluster_assignment])
cell_type=cell_type.sort_values()
lut2=dict(zip(cell_type.sort_values().unique(), colors))
lut2=dict(sorted(lut2.items()))
col_colors= cell_type.map(lut2)
col_colors.index=pa.Series(self.cellNames)[cell_type.index]
mycol=[{k:tuple(np.array(self.hex_to_rgb(v))/255)} for k, v in lut2.items()]
self.color_dict={}
[self.color_dict.update(c) for c in mycol]
self.color=[lut2[self.cluster_label[i]] for i in self.cluster_assignment]
self.color_dict=lut2
return None
def cellMatrix2cellCorpus(self, datamatrix):
cell_Courpus=[]
for k in range(datamatrix.shape[0]):
cell_Courpus.append([(i,j) for i, j in enumerate(datamatrix.iloc[k,:])])
id2gene={i:j for i,j in enumerate(datamatrix.columns)}
id2cell={i:j for i,j in enumerate(datamatrix.index)}
return cell_Courpus, id2gene, id2cell
def gene_symbol_to_ENSEMBLID(self, symbol, organisum="hsapiens"):
if(organisum=="hsapiens"):
genes=pa.read_csv("https://media.githubusercontent.com/media/insilicolife/micti/master/data/mart_export_stable_genes_human.txt", sep="\t")
genes.index=genes["Gene name"]
ENSEBMLID=genes.loc[symbol,"Gene stable ID"]
Genes=ENSEBMLID.dropna().drop_duplicates()
elif(organisum=="mmusculus"):
genes=pa.read_csv("https://media.githubusercontent.com/media/insilicolife/micti/master/data/mart_export_mouse_stable_gene.txt", sep="\t")
genes.index=genes["Gene name"]
ENSEBMLID=genes.loc[symbol,"Gene stable ID"]
Genes=ENSEBMLID.dropna().drop_duplicates()
else:
Genes=symbol
#print("give organisum")
return Genes
def ENSEMBLID_to_geneSymbol(self, ENSEMBL, organisum="hsapiens"):
if(organisum=="hsapiens"):
genes=pa.read_csv("https://media.githubusercontent.com/media/insilicolife/micti/master/data/mart_export_stable_genes_human.txt", sep="\t")
genes.index=genes["Gene stable ID"]
gene_symbol=genes.loc[ENSEMBL,"Gene name"]
Genes=gene_symbol.dropna().drop_duplicates()
elif(organisum=="mmusculus"):
genes=pa.read_csv("https://media.githubusercontent.com/media/insilicolife/micti/master/data/mart_export_mouse_stable_gene.txt", sep="\t")
genes.index=genes["Gene stable ID"]
gene_symbol=genes.loc[ENSEMBL,"Gene name"]
Genes=gene_symbol.dropna().drop_duplicates()
else:
Genes=ENSEMBL
#print("give organisum")
return Genes
def ICF(self,data):
matrixx=pa.DataFrame((data.T.toarray()))
totalCells=matrixx.shape[1]
idf=np.log(totalCells/np.array(matrixx[matrixx > self.th].count(axis=1).add(1)))
icf_matrix=matrixx.T*np.array(idf)
return np.array(icf_matrix)
def get_Visualization(self,dim=2,method="PCA"):
if method=="PCA":
if dim>3:
print ("Please give at most three dimentions")
else:
svd = TruncatedSVD(n_components=dim)
if isspmatrix(self.data):
svd_fit = svd.fit(self.data.toarray())
svdTransform=svd.fit_transform(self.data.toarray())
else:
svd_fit = svd.fit(self.data)
svdTransform=svd.fit_transform(self.data)
if dim==3:
fig=p.figure()
ax = p3.Axes3D(fig)
ax.scatter(svdTransform[:,0], svdTransform[:,1], svdTransform[:,2], c=self.color)
ax.set_xlabel("PCA1")
ax.set_ylabel("PCA2")
ax.set_zlabel("PCA3")
fig.add_axes(ax)
p.show()
elif dim==2:
plt.scatter(svdTransform[:,0], svdTransform[:,1], c=self.color)
plt.xlabel("PCA1")
plt.ylabel("PCA2")
plt.suptitle("MICTI with k={0:d}".format(self.k), fontsize=8)
plt.legend(bbox_to_anchor=(1.65, 1.65), loc='center', ncol=1)
plt.legend(list(self.cluster_assignment))
plt.show()
else:
print ("dimentionality error")
elif method=="tsne":
if dim>3:
print ("Please give at most three dimentions")
else:
svd = TruncatedSVD(n_components=5)
if isspmatrix(self.data):
svd_fit = svd.fit(self.data.toarray())
svdTransformTsne=svd.fit_transform(self.data.toarray())
else:
svd_fit = svd.fit(self.data)
svdTransformTsne=svd.fit_transform(self.data)
X_tsne=TSNE(n_components=dim, random_state=0)
x_tsne=X_tsne.fit_transform(svdTransformTsne)
if dim==3:
fig=p.figure()
ax = p3.Axes3D(fig)
ax.scatter(x_tsne[:,0], x_tsne[:,1], x_tsne[:,2], c=self.color)
ax.set_xlabel("tsne1")
ax.set_xlabel("tsne2")
ax.set_xlabel("tsne3")
fig.add_axes(ax)
p.show()
elif dim==2:
data = pa.DataFrame(columns=['tsne_1','tsne_2','cell type'])
data['cell type']=[self.cluster_label[i] for i in list(self.cluster_assignment)]
data['tsne_1']=x_tsne[:,0]
data['tsne_2']=x_tsne[:,1]
if len(self.color_dict)>0:
facet = sns.lmplot(data=data, x='tsne_1', y='tsne_2', hue='cell type', fit_reg=False, legend=True, legend_out=True, palette=self.color_dict, order=5)
else:
facet = sns.lmplot(data=data, x='tsne_1', y='tsne_2', hue='cell type', fit_reg=False, legend=True, legend_out=True)
plt.savefig("MICTI_Plot.pdf", format="pdf", dpi=300, bbox_inches='tight')
plt.show()
else:
print ("dimetionality error")
else:
print ("Please give method==pca or method=tsne")
def get_cluster_data(self, cluster_number):
return self.data.toarray()[np.in1d(self.cluster_assignment, cluster_number),:], self.cellNames[np.in1d(self.cluster_assignment, cluster_number)]
def get_cluster_ICF_data(self, cluster_number):
return self.ICF(self.data[np.in1d(self.cluster_assignment, cluster_number),:])
def get_cluster_CF_data(self,cluster_number):
return self.CF(self.data[np.in1d(self.cluster_assignment, cluster_number),:])
def get_selected_cluster_marker(self, clusters):
datta=self.data[np.in1d(np.array(self.cluster_assignment), clusters),:]
index=self.cluster_assignment[np.in1d(np.array(self.cluster_assignment), clusters)]
dat_common=self.CF(datta)
dat_identity=self.ICF(datta)
idd_com=[]
idd_j=[]
for j in clusters:
datt=dat_identity[np.in1d(np.array(index), [j]),:]
idxx=np.mean(datt, axis=0)
idxx=np.array(idxx).reshape(idxx.shape[0],)
idx = idxx.argsort()[::-1]
iD=[]
print('Cluster identifier',j)
if self.ensembl:
for i in range(18): # Print each gene along with the feature-encoding weight
print('{0:s}:{1:.2e}'.format(list(self.ENSEMBLID_to_geneSymbol([self.geneNames[idx[i]]]))[0], idxx[idx[i]]))
iD.append(list(self.ENSEMBLID_to_geneSymbol([self.geneNames[idx[i]]]))[0])
else:
for i in range(18): # Print each gene along with the feature-encoding weight
print('{0:s}:{1:.2e}'.format(self.geneNames[idx[i]], idxx[idx[i]]))
iD.append(self.geneNames[idx[i]])
idd_j.append(iD)
return datt, idxx
def get_gene_over_representation(self,topn=10):
enrichmentTable={}
for i in range(self.k):
top10Genes=[]
print('Cluster {0:s} ({1:d} cells)'.format(self.cluster_label[i], int(np.sum(self.cluster_assignment==i))))
idxx=np.mean(self.data_ICF[self.cluster_assignment==i,:], axis=0)
idxx=np.array(idxx).reshape(idxx.shape[0],)
idx = idxx.argsort()[::-1]
for j in range(topn):
top10Genes.append(self.geneNames[idx[j]])
if self.ensembl:
top10Genes=list(self.ENSEMBLID_to_geneSymbol(top10Genes,organisum=self.organsm))
print(top10Genes)
else:
top10Genes=top10Genes
print(top10Genes)
enrichment = gprofiler(top10Genes, organism=self.organsm)
enrichmentTable[i]=enrichment.sort_values(by=['p.value'])[["term.id","p.value","domain","term.name","intersection"]]
print('')
return enrichmentTable
def get_MICTI_standardized_mean_over_var(self, clusters):
datta=self.data_ICF[np.in1d(np.array(self.cluster_assignment), clusters),:]
ccc=np.array(pa.DataFrame(datta).loc[~(pa.DataFrame(datta)==0).all(axis=0)])
val=np.mean(ccc, axis=0)/(np.log(np.var(ccc, axis=0)+2))
z_score=(val-np.mean(val))/np.sqrt(np.var(val))
return z_score
def calculate_pvalue(self, scores):
return 2*(1-scipy.special.ndtr(abs(scores)))
def FDR_BH(self, p):
"""Benjamini-Hochberg p-value correction for multiple hypothesis testing."""
p = np.asfarray(p)
by_descend = p.argsort()[::-1]
by_orig = by_descend.argsort()
steps = float(len(p)) / np.arange(len(p), 0, -1)
q = np.minimum(1, np.minimum.accumulate(steps * p[by_descend]))
return q[by_orig]
def marker_gene_FDR_p_value(self, clusterNo):
z_score=self.get_MICTI_standardized_mean_over_var(clusterNo)
p_val=self.calculate_pvalue(z_score)
FDR_pvalue=self.FDR_BH(p_val)
result=pa.DataFrame({"Z_scores":z_score,"p_value":p_val,"Adj P-value":FDR_pvalue}, index=self.geneNames)
return result.sort_values("Adj P-value")
def get_gene_over_representation_for_topn_genes(self,topn=10):
enrichmentTable={}
for i in range(self.k):
print('Cluster {0:s} ({1:d} cells)'.format(str(self.cluster_label[i]), int(np.sum(self.cluster_assignment==i))))
genes=list(self.marker_gene_FDR_p_value(i).index)
top10Genes=genes[:topn]
if self.ensembl:
top10Genes=list(self.ENSEMBLID_to_geneSymbol(top10Genes,organisum=self.organsm))
print(top10Genes)
else:
top10Genes=top10Genes
print(top10Genes)
enrichment = gprofiler(top10Genes, organism=self.organsm)
enrichmentTable[i]=enrichment.sort_values(by=['p.value'])[["term.id","p.value","domain","term.name","intersection"]]
print('')
return enrichmentTable
def get_gene_list_over_representation_analysis(self, gene_list):
enrichment = gprofiler(gene_list, organism=self.organsm)
enrichmentTable=enrichment.sort_values(by=['p.value'])
return enrichmentTable
def get_markers_by_Pvalues_and_Zscore(self,cluster,threshold_pvalue=.01, threshold_z_score=0):
result=self.marker_gene_FDR_p_value(cluster)
genenames=result.loc[list(np.array(result["Adj P-value"]<threshold_pvalue) & np.array(result["Z_scores"]>threshold_z_score)),:].sort_values("Adj P-value")
genenames = genenames[~genenames.index.duplicated(keep='first')]
return genenames
def cluster_cells(self, numberOfCluster=None,subspace=False, min_sample=10, method="kmeans", maxiter=10e3, alpha=1, gamma=1, eta=0.01, eps=0.5, min_samples=5, metric='euclidean', xi=.05, min_cluster_size=.05):
if(subspace==False):
data=self.data
else:
svd = TruncatedSVD(n_components=500)
data=svd.fit_transform(mictiObject_1.data.toarray())
if method=="kmeans":
kmean=Kmeans.Kmeans(data, numberOfCluster, self.geneNames, self.cellNames)
_, self.cluster_assignment=kmean.kmeans_multiple_runs(maxiter,5)
self.k=len(set(self.cluster_assignment))
elif method=="GM":
EM_GM=GM.GM(data, numberOfCluster, self.geneNames, self.cellNames)
EM_GMM=EM_GM.EM_for_high_dimension()
self.cluster_assignment=np.argmax(EM_GMM["resp"], axis=1)
self.k=len(set(self.cluster_assignment))
elif method=="hdp":
corpusData=pa.DataFrame(data.toarray())
corpusData.columns=self.geneNames
corpusData.index=self.cellNames
cc, id2g,id2c =self.cellMatrix2cellCorpus(corpusData)
hdp=HdpModel(cc,id2g, alpha=alpha, gamma=gamma, eta=eta)
tp_dist=hdp.__getitem__(cc)
cell_tp=[max(dict(i), key=dict(i).get) for i in tp_dist]
low_conf_cluster=np.where(np.bincount(cell_tp)<min_sample)
filter_noise=[False if i in low_conf_cluster[0] else True for i in cell_tp]
new_assignment=np.array([cell_tp[i] if filter_noise[i] else 100 for i in range(len(filter_noise))])
new_assignment[new_assignment > sorted(set(new_assignment))[-2]] = sorted(set(new_assignment))[-2]+1
self.cluster_assignment=new_assignment
self.k=len(new_assignment)
elif method=="lda":
corpusData=pa.DataFrame(data.toarray())
corpusData.columns=self.geneNames
corpusData.index=self.cellNames
cc, id2g,id2c =self.cellMatrix2cellCorpus(corpusData)
lda = LdaModel(corpus=cc, id2word=id2g, num_topics=numberOfCluster, update_every=1, passes=1, alpha=alpha, eta=eta)
cell_type=lda.get_document_topics(cc)
cell_type_lda=[max(dict(i), key=dict(i).get) for i in cell_type]
self.cluster_assignment=cell_type_lda
self.k=len(set(cell_type_lda))
elif method=="aggl":
aggl_clustering=cluster.AgglomerativeClustering(n_clusters=numberOfCluster).fit(data.toarray())
self.cluster_assignment=aggl_clustering.labels_
self.k=len(set(aggl_clustering.labels_))
elif method=="birch":
birch_clustering=cluster.Birch(n_clusters=numberOfCluster).fit(data.toarray())
self.cluster_assignment=birch_clustering.predict(data.toarray())
self.k=len(set(list(self.cluster_assignment)))
elif method=="dbscan":
dbscan_clustering=cluster.DBSCAN(eps=eps, min_samples=min_samples, metric=metric).fit(data.toarray())
dbscan_lables=dbscan_clustering.labels_
dbscan_lables[dbscan_lables < 0] = dbscan_lables.max()+1
self.cluster_assignment=dbscan_lables
self.k=len(set(dbscan_lables))
elif method=="knn":
knn_sparce_connectivity=kneighbors_graph(data.toarray(), min_sample)
n_components, labels = csgraph.connected_components(knn_sparce_connectivity)
labels[labels < 0] = labels.max()+1
self.cluster_assignment=labels
self.k=len(set(labels))
elif method=="optics":
optics_clustering=cluster.OPTICS(min_samples=min_samples, xi=xi, min_cluster_size=min_cluster_size, metric=metric).fit(data.toarray())
optics_label=optics_clustering.labels_[optics_clustering.ordering_]
optics_label[optics_label < 0] = optics_label.max()+1
self.cluster_assignment = optics_label
self.k=len(set(optics_label))
self.cluster_label=[str(i) for i in range(self.k)]
return None
def get_Radar_plot(self):
sig_genes=[dict({self.cluster_label[i]:list(self.get_markers_by_Pvalues_and_Zscore(i).index)}) for i in range(len(self.cluster_label))]
sig_genes=dict(j for i in sig_genes for j in i.items())
#sig_genes=sorted(sig_genes)
genes_by_cell_type=[]
data=[]
data.append(sorted(list(sig_genes.keys())))
#print(sig_genes)
cell_typ=[self.cluster_label[j] for j in self.cluster_assignment]
for k in sorted(sig_genes.keys()):
#print(k,v)
genes_by_cell_type.append(sig_genes[k])
try:
my_data=self.get_selected_data(sig_genes[k]).T
if(my_data.empty):
data.append((k, np.array([])))
#data[0].remove(k)
continue
my_data["cell_type"]=cell_typ
#print(my_data.head())
my_data=my_data.groupby("cell_type").mean().T
my_data=(my_data.T/my_data.sum(axis=1)).T
data.append((k, np.array(my_data)))
del my_data
except ValueError:
print(k, "does not have markers")
#print(genes_by_cell_type,data)
radarPlot.radarPlot(data,genes_by_cell_type)
return data,genes_by_cell_type
def get_selected_data(self, geneLists):
my_data=pa.DataFrame(self.data.toarray()).T
my_data.index=self.geneNames
my_data.columns=self.cellNames
return my_data.loc[geneLists,:]
def heatMap(self, cluster_marker=None, row_cluster=False, col_cluster=False):
colors=['#ffe119','#0082c8','#f58231','#911eb4','#46f0f0','#f032e6','#d2f53c','#fabebe','#008080','#e6beff',
'#aa6e28','#fffac8','#800000','#aaffc3','#808000','#ffd8b1','#000080','#808080','#FFFFFF','#000000'][:self.k]
cell_type=pa.Series([self.cluster_label[j] for j in self.cluster_assignment])
cell_type=cell_type.sort_values()
lut2=dict(zip(cell_type.sort_values().unique(), colors))
lut2=dict(sorted(lut2.items()))
col_colors= cell_type.map(lut2)
col_colors.index=pa.Series(self.cellNames)[cell_type.index]
if(cluster_marker==None):
markers=[list(self.get_markers_by_Pvalues_and_Zscore(i, threshold_pvalue=.01,threshold_z_score=0).index) for i in range(self.k)]
markers_label=[list(np.repeat(self.cluster_label[i], len(markers[i]), axis=0)) for i in range(len(markers))]
markers = pa.Series(sum(markers, []))
markers_label=pa.Series(sum(markers_label, []))
cell_type=pa.Series([self.cluster_label[j] for j in self.cluster_assignment])
lut = dict(zip(markers_label.sort_values().unique(), colors[:self.k]))
row_colors = markers_label.map(lut)
marker_data=self.get_selected_data(markers)
row_colors.index=list(markers)
marker_data=marker_data.T.loc[(col_colors.index),:].T
marker_data=marker_data[~marker_data.index.duplicated(keep='first')]
row_colors=row_colors[~row_colors.index.duplicated(keep='first')]
mycol=[{k:tuple(np.array(self.hex_to_rgb(v))/255)} for k, v in lut2.items()]
self.color_dict={}
[self.color_dict.update(c) for c in mycol]
g=heatmap.heatmap(marker_data, row_color=row_colors, col_color=col_colors, color_label=lut2)
self.color=[lut2[self.cluster_label[i]] for i in self.cluster_assignment]
self.color_dict=lut2
plt.savefig('MICTI_heatmap.pdf', format="pdf", dpi=300, bbox_inches='tight')
else:
markers=self.get_markers_by_Pvalues_and_Zscore(cluster_marker, threshold_pvalue=.01,threshold_z_score=0).index
marker_data=self.get_selected_data(list(markers))
marker_data=marker_data.T.loc[(col_colors.index),:].T
self.color_dict=lut2
mycol=[{k:tuple(np.array(self.hex_to_rgb(v))/255)} for k, v in lut2.items()]
self.color_dict={}
[self.color_dict.update(c) for c in mycol]
g=heatmap.heatmap(marker_data, row_color=None, col_color=col_colors, color_label=lut2)
self.color=[lut2[self.cluster_label[i]] for i in self.cluster_assignment]
plt.savefig('MICTI_heatmap.pdf', format="pdf", dpi=300, bbox_inches='tight')
return plt.show()
def cluster_extrinsic_evaluation(self, trueLable):
return dict(
Jaccard_score=metrics.jaccard_similarity_score(trueLable, self.cluster_assignment),
FM_index=metrics.fowlkes_mallows_score(trueLable, self.cluster_assignment),
F_measure=metrics.f1_score(trueLable, self.cluster_assignment, average="weighted"),
V_measure=metrics.v_measure_score(trueLable, self.cluster_assignment),
ARI=metrics.adjusted_rand_score(trueLable, self.cluster_assignment),
AMI=metrics.adjusted_mutual_info_score(trueLable, self.cluster_assignment)
)
def cluster_intrinsic_evaluation(self):
return dict(
silhouette_score=metrics.silhouette_score(self.data.toarray(), self.cluster_assignment, metric='euclidean'),
DB_index=metrics.davies_bouldin_score(self.data.toarray(), self.cluster_assignment) ,
CH_index=metrics.calinski_harabasz_score(self.data.toarray(), self.cluster_assignment)
)
def hex_to_rgb(self, hex):
hex = hex.lstrip('#')
hlen = len(hex)
return tuple(int(hex[i:i+hlen//3], 16) for i in range(0, hlen, hlen//3))