-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsftoguff.py
84 lines (72 loc) · 3.26 KB
/
sftoguff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import subprocess
import webbrowser
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils import RepositoryNotFoundError, EntryNotFoundError
print(f"Current working directory: {os.getcwd()}")
print(f"You need to ensure you have llama.cpp installed and in your PATH.")
print(f"Otherwise, set the path to your llama.cpp executable below.")
llamacpp = "llama.cpp/"
llamacppconvert = os.path.join(os.getcwd(),"llama.cpp", "convert_hf_to_gguf.py")
llamacppconvert = os.path.abspath(llamacppconvert)
if not os.path.exists(llamacppconvert):
print("Error: convert_hf_to_gguf.py not found in llama.cpp directory.")
exit(1)
# Prompt the user for the model ID
model_id = input("Enter the Hugging Face model ID: ")
# Check if the model exists on Hugging Face
api = HfApi()
try:
model_info = api.model_info(model_id)
model_name = model_info.modelId.split("/")[-1]
except RepositoryNotFoundError:
print(f"Model '{model_id}' not found on Hugging Face.")
exit(1)
# Generate the local directory name from the model name
local_dir = os.path.join(os.getcwd(),"sf", model_name)
dodownload = True
if os.path.exists(local_dir):
redownload = input(f"'{local_dir}' already exists. Do you want to redownload it? (y/[n]): ").strip().lower()
redownload = redownload[0] if redownload else 'n'
if redownload != 'y':
print(f"Skipping download of '{model_name}'.")
dodownload = False
if dodownload:
from huggingface_hub import snapshot_download
model_id=model_id
snapshot_download(repo_id=model_id, local_dir=local_dir,
local_dir_use_symlinks=False, revision="main")
# run python llama.cpp/convert.py
guff_folder = os.path.join(os.getcwd(),"sf", f"{model_name}-guff")
guff_folder = os.path.abspath(guff_folder)
guff_file = os.path.join(os.getcwd(),"sf", guff_folder, f"{model_name}.guff")
guff_file = os.path.abspath(guff_file)
dogulffile=True
if not os.path.exists(guff_folder):
guff_dir = os.path.dirname(guff_file)
print(f"Creating Guff folder: {guff_dir}")
os.makedirs(guff_dir, exist_ok=True)
if os.path.exists(guff_file):
regenerateguff = input(f"'{guff_file}' already exists. Do you want to recreate it? (y/[n]): ").strip().lower()
regenerateguff = regenerateguff[0] if regenerateguff else 'n'
if regenerateguff != 'y':
print(f"Skipping generation of '{guff_file}'.")
dogulffile=False
if dogulffile:
print(f"Generating Guff file: {guff_file}")
command = f"python {llamacppconvert} {local_dir} --outfile {guff_file}"
print(f"Running command: {command}")
subprocess.run(command, shell=True)
#python llama.cpp/convert.py local_dir --outfile {model_name}.gguf --outtype q8_0
mainpy = os.path.join(os.getcwd(),"main.py")
mainpy = os.path.abspath(mainpy)
if os.path.exists(mainpy):
proceed = input("Do you want to run import the guff file into ollama? (y/[n]]): ").strip().lower()
proceed = proceed[0] if proceed else 'n'
if proceed == 'y':
print (f"GGUF file: {guff_file}")
command = f"python {mainpy} {guff_file}"
print (f"Running command: {command}")
# Run the command to import the GGUF model into Ollama
#command = f"ollama create {model_name} -f {model_name}.gguf"
subprocess.run(command, shell=True)