forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgcnet.py
223 lines (182 loc) · 7.81 KB
/
gcnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class GCNet(nn.Layer):
"""
The GCNet implementation based on PaddlePaddle.
The original article refers to
Cao, Yue, et al. "GCnet: Non-local networks meet squeeze-excitation networks and beyond"
(https://arxiv.org/pdf/1904.11492.pdf).
Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101.
backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone.
gc_channels (int, optional): The input channels to Global Context Block. Default: 512.
ratio (float, optional): It indicates the ratio of attention channels and gc_channels. Default: 0.25.
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=(2, 3),
gc_channels=512,
ratio=0.25,
enable_auxiliary_loss=True,
align_corners=False,
pretrained=None):
super().__init__()
self.backbone = backbone
backbone_channels = [
backbone.feat_channels[i] for i in backbone_indices
]
self.head = GCNetHead(num_classes, backbone_indices, backbone_channels,
gc_channels, ratio, enable_auxiliary_loss)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feat_list = self.backbone(x)
logit_list = self.head(feat_list)
return [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in logit_list
]
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class GCNetHead(nn.Layer):
"""
The GCNetHead implementation.
Args:
num_classes (int): The unique number of target classes.
backbone_indices (tuple): Two values in the tuple indicate the indices of output of backbone.
The first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of GlobalContextBlock.
backbone_channels (tuple): The same length with "backbone_indices". It indicates the channels of corresponding index.
gc_channels (int): The input channels to Global Context Block.
ratio (float): It indicates the ratio of attention channels and gc_channels.
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
"""
def __init__(self,
num_classes,
backbone_indices,
backbone_channels,
gc_channels,
ratio,
enable_auxiliary_loss=True):
super().__init__()
in_channels = backbone_channels[1]
self.conv_bn_relu1 = layers.ConvBNReLU(
in_channels=in_channels,
out_channels=gc_channels,
kernel_size=3,
padding=1)
self.gc_block = GlobalContextBlock(
gc_channels=gc_channels, in_channels=gc_channels, ratio=ratio)
self.conv_bn_relu2 = layers.ConvBNReLU(
in_channels=gc_channels,
out_channels=gc_channels,
kernel_size=3,
padding=1)
self.conv_bn_relu3 = layers.ConvBNReLU(
in_channels=in_channels + gc_channels,
out_channels=gc_channels,
kernel_size=3,
padding=1)
self.dropout = nn.Dropout(p=0.1)
self.conv = nn.Conv2D(
in_channels=gc_channels, out_channels=num_classes, kernel_size=1)
if enable_auxiliary_loss:
self.auxlayer = layers.AuxLayer(
in_channels=backbone_channels[0],
inter_channels=backbone_channels[0] // 4,
out_channels=num_classes)
self.backbone_indices = backbone_indices
self.enable_auxiliary_loss = enable_auxiliary_loss
def forward(self, feat_list):
logit_list = []
x = feat_list[self.backbone_indices[1]]
output = self.conv_bn_relu1(x)
output = self.gc_block(output)
output = self.conv_bn_relu2(output)
output = paddle.concat([x, output], axis=1)
output = self.conv_bn_relu3(output)
output = self.dropout(output)
logit = self.conv(output)
logit_list.append(logit)
if self.enable_auxiliary_loss:
low_level_feat = feat_list[self.backbone_indices[0]]
auxiliary_logit = self.auxlayer(low_level_feat)
logit_list.append(auxiliary_logit)
return logit_list
class GlobalContextBlock(nn.Layer):
"""
Global Context Block implementation.
Args:
in_channels (int): The input channels of Global Context Block.
ratio (float): The channels of attention map.
"""
def __init__(self, gc_channels, in_channels, ratio):
super().__init__()
self.gc_channels = gc_channels
self.conv_mask = nn.Conv2D(
in_channels=in_channels, out_channels=1, kernel_size=1)
self.softmax = nn.Softmax(axis=2)
inter_channels = int(in_channels * ratio)
self.channel_add_conv = nn.Sequential(
nn.Conv2D(
in_channels=in_channels,
out_channels=inter_channels,
kernel_size=1),
nn.LayerNorm(normalized_shape=[inter_channels, 1, 1]),
nn.ReLU(),
nn.Conv2D(
in_channels=inter_channels,
out_channels=in_channels,
kernel_size=1))
def global_context_block(self, x):
x_shape = paddle.shape(x)
# [N, C, H * W]
input_x = paddle.reshape(x, shape=[0, self.gc_channels, -1])
# [N, 1, C, H * W]
input_x = paddle.unsqueeze(input_x, axis=1)
# [N, 1, H, W]
context_mask = self.conv_mask(x)
# [N, 1, H * W]
context_mask = paddle.reshape(context_mask, shape=[0, 1, -1])
context_mask = self.softmax(context_mask)
# [N, 1, H * W, 1]
context_mask = paddle.unsqueeze(context_mask, axis=-1)
# [N, 1, C, 1]
context = paddle.matmul(input_x, context_mask)
# [N, C, 1, 1]
context = paddle.reshape(context, shape=[0, self.gc_channels, 1, 1])
return context
def forward(self, x):
context = self.global_context_block(x)
channel_add_term = self.channel_add_conv(context)
out = x + channel_add_term
return out