-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaes.c
665 lines (548 loc) · 16.4 KB
/
aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <locale.h>
#include "aes.h"
int main(int argc, char *argv[])
{
// Garantir suporte a UTF-8
setlocale(LC_ALL, "pt_BR.UTF-8");
// Definições de tamanho
int expandedKeySize = 176;
enum keySize size = SIZE_16;
// Chave e outros vetores
unsigned char expandedKey[expandedKeySize];
unsigned char key[16];
unsigned char plaintext[16];
unsigned char ciphertext[16];
unsigned char decryptedtext[16];
// Chaves e texto plano em HEX
const char *hex_key = "0f1571c947d9e8590cb7add6af7f6798";
const char *hex_plain_text = "0123456789abcdeffedcba9876543210";
// Converter chave e plaintext de hexadecimal para bytes
hexStringToBytes(hex_key, key, 16);
hexStringToBytes(hex_plain_text, plaintext, 16);
printf("\nChave cifrada (HEX):\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x", key[i]);
}
printf("\n");
// Expandir a chave
expandKey(expandedKey, key, size, expandedKeySize);
printf("\nChave expandida (HEX):\n");
for (int i = 0; i < expandedKeySize; i++)
{
printf("%2.2x%c", expandedKey[i], ((i + 1) % 16) ? ' ' : '\n');
}
printf("\nTexto plano (HEX):\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x", plaintext[i]);
}
printf("\n");
aes_encrypt(plaintext, ciphertext, key, SIZE_16);
printf("\nTexto cifrado (HEX):\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x", ciphertext[i]);
}
printf("\n");
// Descriptografar o texto cifrado
aes_decrypt(ciphertext, decryptedtext, key, SIZE_16);
printf("\nTexto descriptografado (HEX):\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x", decryptedtext[i]);
}
printf("\n");
printf("\nTexto descriptografado (Plano):\n");
unsigned char bytes_arr[16];
hexStringToBytes(hex_plain_text, bytes_arr, 16);
int length = sizeof(bytes_arr) / sizeof(bytes_arr[0]);
char asciiStr[length + 1];
bytesToAscii(bytes_arr, length, asciiStr);
printf("%s", asciiStr);
printf("\n");
return 0;
}
// Transforma bytes em ASCII
void bytesToAscii(const unsigned char *bytes, int length, char *asciiStr) {
for (int i = 0; i < length; i++) {
asciiStr[i] = (char)bytes[i]; // Converte o byte para char
}
asciiStr[length] = '\0'; // Adiciona o terminador nulo no final da string
}
// Transforma strings HEX em bytes
void hexStringToBytes(const char *hexString, unsigned char *byteArray, int byteArraySize)
{
for (int i = 0; i < byteArraySize; i++)
{
sscanf(hexString + 2 * i, "%2hhx", &byteArray[i]);
}
}
// Getter da S-BOX
unsigned char getSBoxValue(unsigned char num)
{
return sbox[num];
}
// Getter da S-BOX invertida
unsigned char getSBoxInvert(unsigned char num)
{
return rsbox[num];
}
/* Rotaciona a palavra 8 bits para à esquerda
* exemplo> rotate(1d2c3a4f) = 2c3a4f1d
*
* word = char[4] (32 bit)
*/
void rotate(unsigned char *word)
{
unsigned char c;
int i;
c = word[0];
for (i = 0; i < 3; i++)
word[i] = word[i + 1];
word[3] = c;
}
// Getter da tabela de R-CON
unsigned char getRconValue(unsigned char num)
{
return Rcon[num];
}
void core(unsigned char *word, int iteration)
{
int i;
rotate(word);
// Aplica a substituição
for (i = 0; i < 4; ++i)
{
word[i] = getSBoxValue(word[i]);
}
// Realiza uma operação XOR com o output do RCON
word[0] = word[0] ^ getRconValue(iteration);
}
// Expande uma chave de 128,192,256 bytes em outra de 176,208,240 bytes
void expandKey(unsigned char *expandedKey,
unsigned char *key,
enum keySize size,
size_t expandedKeySize)
{
// Tamanho da chave expandida
int currentSize = 0;
int rconIteration = 1;
int i;
unsigned char t[4] = {0}; // Temp
// Define os 16,24,32 bytes da chave expandida para a chave de entrada
for (i = 0; i < size; i++)
expandedKey[i] = key[i];
currentSize += size;
while (currentSize < expandedKeySize)
{
// Atribui os 4 bytes anteriores a variável temp
for (i = 0; i < 4; i++)
{
t[i] = expandedKey[(currentSize - 4) + i];
}
// A cada 16,24,32 bytes, aplica para a iteração para temp do RCON+1
if (currentSize % size == 0)
{
core(t, rconIteration++);
}
// Para chaves de 256 bits, é adicionado uma S-BOX extra
if (size == SIZE_32 && ((currentSize % size) == 16))
{
for (i = 0; i < 4; i++)
t[i] = getSBoxValue(t[i]);
}
/* Faz o XOR com t com o bloco de quatro bytes, 16,24,32 bytes antes da nova chave expandida.
* que vira os próximos quatro bytes na chave expandida.
*/
for (i = 0; i < 4; i++)
{
expandedKey[currentSize] = expandedKey[currentSize - size] ^ t[i];
currentSize++;
}
}
}
void subBytes(unsigned char *state)
{
int i;
/*
* Substitui todos os valores do estado com o valor no S-BOX
* usando o valor do estado como índice para o S-BOX
*/
for (i = 0; i < 16; i++)
state[i] = getSBoxValue(state[i]);
}
void shiftRows(unsigned char *state)
{
int i;
// Itera sobre as 4 linhas e as troca com essa linha
for (i = 0; i < 4; i++)
shiftRow(state + i * 4, i);
}
void shiftRow(unsigned char *state, unsigned char nbr)
{
int i, j;
unsigned char tmp;
// Cada iteração desloca a linha para a esquerda em 1
for (i = 0; i < nbr; i++)
{
tmp = state[0];
for (j = 0; j < 3; j++)
state[j] = state[j + 1];
state[3] = tmp;
}
}
void addRoundKey(unsigned char *state, unsigned char *roundKey)
{
int i;
// Faz um XOR do estado atual com a roundKey
for (i = 0; i < 16; i++)
state[i] = state[i] ^ roundKey[i];
}
unsigned char galois_multiplication(unsigned char a, unsigned char b)
{
unsigned char p = 0;
unsigned char counter;
unsigned char hi_bit_set;
for (counter = 0; counter < 8; counter++)
{
if ((b & 1) == 1)
p ^= a;
hi_bit_set = (a & 0x80);
a <<= 1;
if (hi_bit_set == 0x80)
a ^= 0x1b;
b >>= 1;
}
return p;
}
void mixColumns(unsigned char *state)
{
int i, j;
unsigned char column[4];
// Itera as 4 colunas
for (i = 0; i < 4; i++)
{
// Constrói uma coluna iterando sobre as 4 linhas
for (j = 0; j < 4; j++)
{
column[j] = state[(j * 4) + i];
}
// Faz o mix da coluna
mixColumn(column);
// Retorna os valores da coluna para o estado
for (j = 0; j < 4; j++)
{
state[(j * 4) + i] = column[j];
}
}
}
void mixColumn(unsigned char *column)
{
unsigned char cpy[4];
int i;
for (i = 0; i < 4; i++)
{
cpy[i] = column[i];
}
column[0] = galois_multiplication(cpy[0], 2) ^
galois_multiplication(cpy[3], 1) ^
galois_multiplication(cpy[2], 1) ^
galois_multiplication(cpy[1], 3);
column[1] = galois_multiplication(cpy[1], 2) ^
galois_multiplication(cpy[0], 1) ^
galois_multiplication(cpy[3], 1) ^
galois_multiplication(cpy[2], 3);
column[2] = galois_multiplication(cpy[2], 2) ^
galois_multiplication(cpy[1], 1) ^
galois_multiplication(cpy[0], 1) ^
galois_multiplication(cpy[3], 3);
column[3] = galois_multiplication(cpy[3], 2) ^
galois_multiplication(cpy[2], 1) ^
galois_multiplication(cpy[1], 1) ^
galois_multiplication(cpy[0], 3);
}
void aes_round(unsigned char *state, unsigned char *roundKey)
{
printf("\nChave da rodada:\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x%c", state[i], ((i + 1) % 4) ? ' ' : '\n');
}
printf("\nEstado inicial:\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x%c", state[i], ((i + 1) % 4) ? ' ' : '\n');
}
subBytes(state);
printf("\nApós SubBytes:\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x%c", state[i], ((i + 1) % 4) ? ' ' : '\n');
}
shiftRows(state);
printf("\nApós ShiftRows:\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x%c", state[i], ((i + 1) % 4) ? ' ' : '\n');
}
mixColumns(state);
printf("\nApós MixColumns:\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x%c", state[i], ((i + 1) % 4) ? ' ' : '\n');
}
addRoundKey(state, roundKey);
printf("\nApós a RoundKey:\n");
for (int i = 0; i < 16; i++)
{
printf("%2.2x%c", state[i], ((i + 1) % 4) ? ' ' : '\n');
}
}
void createRoundKey(unsigned char *expandedKey, unsigned char *roundKey)
{
int i, j;
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
roundKey[(i + (j * 4))] = expandedKey[(i * 4) + j];
}
}
void aes_main(unsigned char *state, unsigned char *expandedKey, int nbrRounds)
{
int i = 0;
unsigned char roundKey[16];
createRoundKey(expandedKey, roundKey);
addRoundKey(state, roundKey);
for (i = 1; i < nbrRounds; i++)
{
printf("\n========Rodada %d========\n", i);
createRoundKey(expandedKey + 16 * i, roundKey);
aes_round(state, roundKey);
printf("\n========Fim da rodada %d========\n", i);
}
createRoundKey(expandedKey + 16 * nbrRounds, roundKey);
subBytes(state);
shiftRows(state);
addRoundKey(state, roundKey);
}
char aes_encrypt_hex(const char *hexInput,
const char *hexKey,
unsigned char *output,
enum keySize size)
{
// O texto e a chave são strings hexadecimais, então são convertidas para bytes
unsigned char input[16]; // 128 bits = 16 bytes
unsigned char key[32]; // 256 bits = 32 bytes (máximo)
// Converter texto plano de hex para bytes
hexStringToBytes(hexInput, input, 16);
// Converter chave de hex para bytes
hexStringToBytes(hexKey, key, size);
// Agora chamar a função original com os inputs em bytes
return aes_encrypt(input, output, key, size);
}
char aes_encrypt(unsigned char *input,
unsigned char *output,
unsigned char *key,
enum keySize size)
{
int expandedKeySize;
int nbrRounds;
unsigned char *expandedKey;
unsigned char block[16];
int i, j;
switch (size)
{
case SIZE_16:
nbrRounds = 10;
break;
case SIZE_24:
nbrRounds = 12;
break;
case SIZE_32:
nbrRounds = 14;
break;
default:
return ERROR_AES_UNKNOWN_KEYSIZE;
break;
}
expandedKeySize = (16 * (nbrRounds + 1));
expandedKey = (unsigned char *)malloc(expandedKeySize * sizeof(unsigned char));
if (expandedKey == NULL)
{
return ERROR_MEMORY_ALLOCATION_FAILED;
}
else
{
/* Defina os valores do bloco para o bloco:
* a0,0 a0,1 a0,2 a0,3
* a1,0 a1,1 a1,2 a1,3
* a2,0 a2,1 a2,2 a2,3
* a3,0 a3,1 a3,2 a3,3
* a ordem de mapeamento é: a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
*/
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
block[(i + (j * 4))] = input[(i * 4) + j];
}
expandKey(expandedKey, key, size, expandedKeySize);
aes_main(block, expandedKey, nbrRounds);
// Desmapeia o bloco novamente
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
output[(i * 4) + j] = block[(i + (j * 4))];
}
free(expandedKey);
expandedKey = NULL;
}
return SUCCESS;
}
void invSubBytes(unsigned char *state)
{
int i;
// Substitui todos os valores do estado com o valor do S-BOX invertido
for (i = 0; i < 16; i++)
state[i] = getSBoxInvert(state[i]);
}
void invShiftRows(unsigned char *state)
{
int i;
// Troca a linha do estado baseado na S-BOX invertida
for (i = 0; i < 4; i++)
invShiftRow(state + i * 4, i);
}
void invShiftRow(unsigned char *state, unsigned char nbr)
{
int i, j;
unsigned char tmp;
// Cada iteração desloca a linha para a direita em 1
for (i = 0; i < nbr; i++)
{
tmp = state[3];
for (j = 3; j > 0; j--)
state[j] = state[j - 1];
state[0] = tmp;
}
}
void invMixColumns(unsigned char *state)
{
int i, j;
unsigned char column[4];
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
column[j] = state[(j * 4) + i];
}
// Faz o mix reverso na coluna
invMixColumn(column);
// Joga os valores no estado
for (j = 0; j < 4; j++)
{
state[(j * 4) + i] = column[j];
}
}
}
void invMixColumn(unsigned char *column)
{
unsigned char cpy[4];
int i;
for (i = 0; i < 4; i++)
{
cpy[i] = column[i];
}
column[0] = galois_multiplication(cpy[0], 14) ^
galois_multiplication(cpy[3], 9) ^
galois_multiplication(cpy[2], 13) ^
galois_multiplication(cpy[1], 11);
column[1] = galois_multiplication(cpy[1], 14) ^
galois_multiplication(cpy[0], 9) ^
galois_multiplication(cpy[3], 13) ^
galois_multiplication(cpy[2], 11);
column[2] = galois_multiplication(cpy[2], 14) ^
galois_multiplication(cpy[1], 9) ^
galois_multiplication(cpy[0], 13) ^
galois_multiplication(cpy[3], 11);
column[3] = galois_multiplication(cpy[3], 14) ^
galois_multiplication(cpy[2], 9) ^
galois_multiplication(cpy[1], 13) ^
galois_multiplication(cpy[0], 11);
}
void aes_invRound(unsigned char *state, unsigned char *roundKey)
{
invShiftRows(state);
invSubBytes(state);
addRoundKey(state, roundKey);
invMixColumns(state);
}
void aes_invMain(unsigned char *state, unsigned char *expandedKey, int nbrRounds)
{
int i = 0;
unsigned char roundKey[16];
createRoundKey(expandedKey + 16 * nbrRounds, roundKey);
addRoundKey(state, roundKey);
for (i = nbrRounds - 1; i > 0; i--)
{
createRoundKey(expandedKey + 16 * i, roundKey);
aes_invRound(state, roundKey);
}
createRoundKey(expandedKey, roundKey);
invShiftRows(state);
invSubBytes(state);
addRoundKey(state, roundKey);
}
char aes_decrypt(unsigned char *input,
unsigned char *output,
unsigned char *key,
enum keySize size)
{
int expandedKeySize;
int nbrRounds;
unsigned char *expandedKey;
unsigned char block[16];
int i, j;
switch (size)
{
case SIZE_16:
nbrRounds = 10;
break;
case SIZE_24:
nbrRounds = 12;
break;
case SIZE_32:
nbrRounds = 14;
break;
default:
return ERROR_AES_UNKNOWN_KEYSIZE;
break;
}
expandedKeySize = (16 * (nbrRounds + 1));
expandedKey = (unsigned char *)malloc(expandedKeySize * sizeof(unsigned char));
if (expandedKey == NULL)
{
return ERROR_MEMORY_ALLOCATION_FAILED;
}
else
{
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
block[(i + (j * 4))] = input[(i * 4) + j];
}
expandKey(expandedKey, key, size, expandedKeySize);
aes_invMain(block, expandedKey, nbrRounds);
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
output[(i * 4) + j] = block[(i + (j * 4))];
}
free(expandedKey);
expandedKey = NULL;
}
return SUCCESS;
}