-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_experiments.py
375 lines (295 loc) · 12.9 KB
/
compute_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os, time, sys
import numpy as np
import scipy, math
import pickle
from matplotlib import pyplot
# Imports from tigramite package available on https://github.com/jakobrunge/tigramite
import tigramite
import tigramite.data_processing as pp
from tigramite.independence_tests import ParCorr, GPDC, CMIknn
# Imports from code inside directory
import generate_data_mod as mod
import utilities as utilities
from utilities import OracleCI
import metrics_mod
from lpcmci import LPCMCI
from svarfci import SVARFCI
from svarrfci import SVARRFCI
from discG2 import DiscG2
from simulate_discrete_scm import binomial_scp, discretized_scp
# Directory to save results
folder_name = "results/"
# Arguments passed via command line
arg = sys.argv
samples = int(arg[1])
verbosity = int(arg[2])
config_list = list(arg)[3:]
num_configs = len(config_list)
time_start = time.time()
if verbosity > 1:
plot_data = True
else:
plot_data = False
def calculate(para_setup):
para_setup_string, sam = para_setup
paras = para_setup_string.split('-')
paras = [w.replace("'","") for w in paras]
model = str(paras[0])
N = int(paras[1])
n_links = int(paras[2])
min_coeff = float(paras[3])
coeff = float(paras[4])
auto = float(paras[5])
contemp_fraction = float(paras[6])
frac_unobserved = float(paras[7])
max_true_lag = int(paras[8])
T = int(paras[9])
ci_test = str(paras[10])
method = str(paras[11])
pc_alpha = float(paras[12])
tau_max = int(paras[13])
#############################################
## Data
#############################################
def lin_f(x): return x
def f2(x): return (x + 5. * x**2 * np.exp(-x**2 / 20.))
if model == 'autobidirected':
if verbosity > 999:
model_seed = verbosity - 1000
else:
model_seed = sam
random_state = np.random.RandomState(model_seed)
links ={
0: [((0, -1), auto, lin_f), ((1, -1), coeff, lin_f)],
1: [],
2: [((2, -1), auto, lin_f), ((1, -1), coeff, lin_f)],
3: [((3, -1), auto, lin_f), ((2, -1), min_coeff, lin_f)],
}
observed_vars = [0, 2, 3]
noises = [random_state.randn for j in range(len(links))]
data_all, nonstationary = mod.generate_nonlinear_contemp_timeseries(
links=links, T=T, noises=noises, random_state=random_state)
data = data_all[:,observed_vars]
elif 'random' in model:
if 'lineargaussian' in model:
coupling_funcs = [lin_f]
noise_types = ['gaussian'] #, 'weibull', 'uniform']
noise_sigma = (0.5, 2)
elif 'nonlinearmixed' in model:
coupling_funcs = [lin_f, f2]
noise_types = ['gaussian', 'gaussian', 'weibull']
noise_sigma = (0.5, 2)
if coeff < min_coeff:
min_coeff = coeff
couplings = list(np.arange(min_coeff, coeff+0.1, 0.1))
couplings += [-c for c in couplings]
auto_deps = list(np.arange(max(0., auto-0.3), auto+0.01, 0.05))
# Models may be non-stationary. Hence, we iterate over a number of seeds
# to find a stationary one regarding network topology, noises, etc
if verbosity > 999:
model_seed = verbosity - 1000
else:
model_seed = sam
for ir in range(1000):
# np.random.seed(model_seed)
random_state = np.random.RandomState(model_seed)
N_all = math.floor((N/(1.-frac_unobserved)))
n_links_all = math.ceil(n_links/N * N_all)
observed_vars = np.sort(random_state.choice(range(N_all),
size=math.ceil((1.-frac_unobserved)*N_all), replace=False)).tolist()
links = mod.generate_random_contemp_model(
N=N_all, L=n_links_all,
coupling_coeffs=couplings,
coupling_funcs=coupling_funcs,
auto_coeffs=auto_deps,
tau_max=max_true_lag,
contemp_fraction=contemp_fraction,
# num_trials=1000,
random_state=random_state)
class noise_model:
def __init__(self, sigma=1):
self.sigma = sigma
def gaussian(self, T):
# Get zero-mean unit variance gaussian distribution
return self.sigma*random_state.randn(T)
def weibull(self, T):
# Get zero-mean sigma variance weibull distribution
a = 2
mean = scipy.special.gamma(1./a + 1)
variance = scipy.special.gamma(2./a + 1) - scipy.special.gamma(1./a + 1)**2
return self.sigma*(random_state.weibull(a=a, size=T) - mean)/np.sqrt(variance)
def uniform(self, T):
# Get zero-mean sigma variance uniform distribution
mean = 0.5
variance = 1./12.
return self.sigma*(random_state.uniform(size=T) - mean)/np.sqrt(variance)
noises = []
for j in links:
noise_type = random_state.choice(noise_types)
sigma = noise_sigma[0] + (noise_sigma[1]-noise_sigma[0])*random_state.rand()
noises.append(getattr(noise_model(sigma), noise_type))
if 'discretebinom' in model:
if 'binom2' in model:
n_binom = 2
elif 'binom4' in model:
n_binom = 4
data_all_check, nonstationary = discretized_scp(links=links, T = T+10000,
n_binom = n_binom, random_state = random_state)
else:
data_all_check, nonstationary = mod.generate_nonlinear_contemp_timeseries(
links=links, T=T+10000, noises=noises, random_state=random_state)
# If the model is stationary, break the loop
if not nonstationary:
data_all = data_all_check[:T]
data = data_all[:,observed_vars]
break
else:
print("Trial %d: Not a stationary model" % ir)
model_seed += 10000
else:
raise ValueError("model %s not known"%model)
if nonstationary:
raise ValueError("No stationary model found: %s" % model)
true_graph = utilities._get_pag_from_dag(links, observed_vars=observed_vars,
tau_max=tau_max, verbosity=verbosity)[1]
if verbosity > 0:
print("True Links")
for j in links:
print (j, links[j])
print("observed_vars = ", observed_vars)
print("True PAG")
if tau_max > 0:
for lag in range(tau_max+1):
print(true_graph[:,:,lag])
else:
print(true_graph.squeeze())
if plot_data:
print("PLOTTING")
for j in range(N):
# ax = fig.add_subplot(N,1,j+1)
pyplot.plot(data[:, j])
pyplot.show()
computation_time_start = time.time()
dataframe = pp.DataFrame(data)
#############################################
## Methods
#############################################
# Specify conditional independence test object
if ci_test == 'par_corr':
cond_ind_test = ParCorr(
significance='analytic',
recycle_residuals=True)
elif ci_test == 'cmi_knn':
cond_ind_test = CMIknn(knn=0.1,
sig_samples=500,
sig_blocklength=1)
elif ci_test == 'gp_dc':
cond_ind_test = GPDC(
recycle_residuals=True)
elif ci_test == 'discg2':
cond_ind_test = DiscG2()
else:
raise ValueError("CI test not recognized.")
if 'lpcmci' in method:
method_paras = method.split('_')
n_preliminary_iterations = int(method_paras[1][7:])
if 'prelimonly' in method: prelim_only = True
else: prelim_only = False
lpcmci = LPCMCI(
dataframe=dataframe,
cond_ind_test=cond_ind_test)
lpcmcires = lpcmci.run_lpcmci(
tau_max = tau_max,
pc_alpha = pc_alpha,
max_p_non_ancestral = 3,
n_preliminary_iterations = n_preliminary_iterations,
prelim_only = prelim_only,
verbosity = verbosity)
graph = lpcmci.graph
val_min = lpcmci.val_min_matrix
max_cardinality = lpcmci.cardinality_matrix
elif method == 'svarfci':
svarfci = SVARFCI(
dataframe=dataframe,
cond_ind_test=cond_ind_test)
svarfcires = svarfci.run_svarfci(
tau_max = tau_max,
pc_alpha = pc_alpha,
max_cond_px = 0,
max_p_dsep = 3,
fix_all_edges_before_final_orientation = True,
verbosity = verbosity)
graph = svarfci.graph
val_min = svarfci.val_min_matrix
max_cardinality = svarfci.cardinality_matrix
elif method == 'svarrfci':
svarrfci = SVARRFCI(
dataframe=dataframe,
cond_ind_test=cond_ind_test)
svarrfcires = svarrfci.run_svarrfci(
tau_max = tau_max,
pc_alpha = pc_alpha,
fix_all_edges_before_final_orientation = True,
verbosity = verbosity)
graph = svarrfci.graph
val_min = svarrfci.val_min_matrix
max_cardinality = svarrfci.cardinality_matrix
else:
raise ValueError("%s not implemented." % method)
computation_time_end = time.time()
computation_time = computation_time_end - computation_time_start
return {
'true_graph':true_graph,
'val_min':val_min,
'max_cardinality':max_cardinality,
# Method results
'computation_time': computation_time,
'graph':graph,
}
if __name__ == '__main__':
all_configs = dict([(conf, {'results':{},
"graphs":{},
"val_min":{},
"max_cardinality":{},
"true_graph":{},
"computation_time":{},} ) for conf in config_list])
job_list = [(conf, i) for i in range(samples) for conf in config_list]
num_tasks = len(job_list)
for config_sam in job_list:
config, sample = config_sam
print("Experiment %s - Realization %d" %(config, sample))
all_configs[config]['results'][sample] = calculate(config_sam)
print("\nsaving all configs...")
for conf in list(all_configs.keys()):
all_configs[conf]['graphs'] = np.zeros((samples, ) + all_configs[conf]['results'][0]['graph'].shape, dtype='<U3')
all_configs[conf]['true_graphs'] = np.zeros((samples, ) + all_configs[conf]['results'][0]['true_graph'].shape, dtype='<U3')
all_configs[conf]['val_min'] = np.zeros((samples, ) + all_configs[conf]['results'][0]['val_min'].shape)
all_configs[conf]['max_cardinality'] = np.zeros((samples, ) + all_configs[conf]['results'][0]['max_cardinality'].shape)
all_configs[conf]['computation_time'] = []
for i in list(all_configs[conf]['results'].keys()):
all_configs[conf]['graphs'][i] = all_configs[conf]['results'][i]['graph']
all_configs[conf]['true_graphs'][i] = all_configs[conf]['results'][i]['true_graph']
all_configs[conf]['val_min'][i] = all_configs[conf]['results'][i]['val_min']
all_configs[conf]['max_cardinality'][i] = all_configs[conf]['results'][i]['max_cardinality']
all_configs[conf]['computation_time'].append(all_configs[conf]['results'][i]['computation_time'])
# Save all results
file_name = folder_name + '%s' %(conf)
# Compute and save metrics in separate (smaller) file
metrics = metrics_mod.get_evaluation(results=all_configs[conf])
for metric in metrics:
if metric != 'computation_time':
print(f"{metric:30s} {metrics[metric][0]: 1.2f} +/-{metrics[metric][1]: 1.2f} ")
else:
print(f"{metric:30s} {metrics[metric][0]: 1.2f} +/-[{metrics[metric][1][0]: 1.2f}, {metrics[metric][1][1]: 1.2f}]")
print("Metrics dump ", file_name.replace("'", "").replace('"', '') + '_metrics.dat')
file = open(file_name.replace("'", "").replace('"', '') + '_metrics.dat', 'wb')
pickle.dump(metrics, file, protocol=-1)
file.close()
del all_configs[conf]['results']
# Also save raw results
print("dump ", file_name.replace("'", "").replace('"', '') + '.dat')
file = open(file_name.replace("'", "").replace('"', '') + '.dat', 'wb')
pickle.dump(all_configs[conf], file, protocol=-1)
file.close()
time_end = time.time()
print('Run time in hours ', (time_end - time_start)/3600.)