forked from datquocnguyen/jPTDP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnnl.py
executable file
·78 lines (65 loc) · 2.58 KB
/
mnnl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
https://raw.githubusercontent.com/bplank/bilstm-aux/master/src/lib/mnnl.py
"""
import dynet
import numpy as np
import sys
## NN classes
class SequencePredictor:
def __init__(self):
pass
def predict_sequence(self, inputs):
raise NotImplementedError("SequencePredictor predict_sequence: Not Implemented")
class FFSequencePredictor(SequencePredictor):
def __init__(self, network_builder):
self.network_builder = network_builder
def predict_sequence(self, inputs):
return [self.network_builder(x) for x in inputs]
class RNNSequencePredictor(SequencePredictor):
def __init__(self, rnn_builder):
"""
rnn_builder: a LSTMBuilder/SimpleRNNBuilder or GRU builder object
"""
self.builder = rnn_builder
def predict_sequence(self, inputs):
s_init = self.builder.initial_state()
return s_init.transduce(inputs)
class BiRNNSequencePredictor(SequencePredictor):
""" a bidirectional RNN (LSTM/GRU) """
def __init__(self, f_builder, b_builder):
self.f_builder = f_builder
self.b_builder = b_builder
def predict_sequence(self, f_inputs, b_inputs):
f_init = self.f_builder.initial_state()
b_init = self.b_builder.initial_state()
forward_sequence = f_init.transduce(f_inputs)
backward_sequence = b_init.transduce(reversed(b_inputs))
return forward_sequence, backward_sequence
class Layer:
""" Class for affine layer transformation or two-layer MLP """
def __init__(self, model, in_dim, output_dim, activation=dynet.tanh, mlp=0, mlp_activation=dynet.rectify):
# if mlp > 0, add a hidden layer of that dimension
self.act = activation
self.mlp = mlp
if mlp:
print('>>> use mlp with dim {} ({})<<<'.format(mlp, mlp_activation))
mlp_dim = mlp
self.mlp_activation = mlp_activation
self.W_mlp = model.add_parameters((mlp_dim, in_dim))
self.b_mlp = model.add_parameters((mlp_dim))
else:
mlp_dim = in_dim
self.W = model.add_parameters((output_dim, mlp_dim))
self.b = model.add_parameters((output_dim))
def __call__(self, x):
if self.mlp:
W_mlp = dynet.parameter(self.W_mlp)
b_mlp = dynet.parameter(self.b_mlp)
act = self.mlp_activation
x_in = act(W_mlp * x + b_mlp)
else:
x_in = x
# from params to expressions
W = dynet.parameter(self.W)
b = dynet.parameter(self.b)
return self.act(W*x_in + b)