-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathknapsack multiple choice.py
86 lines (59 loc) · 2.95 KB
/
knapsack multiple choice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# coding: utf-8
# In[1]:
#this is a more advanced knapsack problem
#we have a new variable called groups
#we are only allowed to select at most one item from each group
#please check the following link for the basic knapsack problem
# https://github.com/je-suis-tm/recursion-and-dynamic-programming/blob/master/knapsack.py
# In[2]:
#solve multiple choice knapsack via dynamic programming
def knapsack_multichoice(total_weight,values,weights,groups):
#python starts index at 0 which is why we use len(values)+1
#create a nested list with size of (number of items+1)*(weights+1)
array=[[0 for _ in range(total_weight+1)] for _ in range(len(values)+1)]
path=[[[] for _ in range(total_weight+1)] for _ in range(len(values)+1)]
#now we begin our traversal on all elements in matrix
#note we would be using i-1 to imply item i
for i in range(1,len(values)+1):
for j in range(1,total_weight+1):
#this is the part to check if adding item i would exceed the current capacity j
#if it does,we go to the previous status
#if not,we shall find out whether adding item i would be the new optimal
if weights[i-1]<=j:
#we only select one item from each group
#we will find the item that maximizes the value in each group
prev_group=groups[i-1]-1
#initialize
subset_max=0
target=0
#get column of the matrix
subset=[row[j-weights[i-1]] for row in array]
#find the item that maximizes the value in the previous group
for k in range(len(values)+1):
if groups[k-1]==prev_group and subset[k]>subset_max:
subset_max=subset[k]
target=k
#dynamic programming
if subset_max+values[i-1]>array[i-1][j]:
array[i][j]=subset_max+values[i-1]
path[i][j]=path[target][j-weights[i-1]]+[i-1]
elif subset_max+values[i-1]==array[i-1][j] and weights[i-1]<weights[path[target][j-weights[i-1]][-1]]:
array[i][j]=subset_max+values[i-1]
path[i][j]=path[target][j-weights[i-1]]+[i-1]
else:
array[i][j]=array[i-1][j]
path[i][j]=path[i-1][j]
else:
array[i][j]=array[i-1][j]
path[i][j]=path[i-1][j]
return array,path
# In[3]:
#a simple test
values=[60,80,100,110,120,150]
weights=[10,15,20,25,30,35]
groups=[0,0,1,1,2,2]
total_weight=50
# In[4]:
array,path=knapsack_multichoice(total_weight,values,weights,groups)
print(array[len(weights)][total_weight])
print(path[len(weights)][total_weight])