-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpythagorean tree.py
196 lines (141 loc) · 6.14 KB
/
pythagorean tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# coding: utf-8
# In[1]:
#fractal is one of the interesting topics in geometry
#it is usually described by a recursive function
#voila,here we are!
import matplotlib.pyplot as plt
# In[2]:
#compute euclidean distance
def euclidean_distance(point1,point2):
return ((point1[0]-point2[0])**2+(point1[1]-point2[1])**2)**0.5
# In[3]:
#simple solution to get coefficients of the equation
def get_line_params(x1,y1,x2,y2):
slope=(y1-y2)/(x1-x2)
intercept=y1-slope*x1
return slope,intercept
# In[4]:
#standard solution to quadratic equation
def solve_quadratic_equation(A,B,C):
x1=(-B+(B**2-4*A*C)**0.5)/(2*A)
x2=(-B-(B**2-4*A*C)**0.5)/(2*A)
return [x1,x2]
# In[5]:
#analytic geometry to compute target datapoints
def get_datapoint(pivot,measure,length,direction='inner'):
#for undefined slope
if pivot[0]==measure[0]:
y1=pivot[1]+length
y2=pivot[1]-length
x1=pivot[0]
x2=pivot[0]
#for general cases
else:
#get line equation
slope,intercept=get_line_params(pivot[0],pivot[1],
measure[0],measure[1],)
#solve quadratic equation
A=1
B=-2*pivot[0]
C=pivot[0]**2-length**2/(slope**2+1)
x1,x2=solve_quadratic_equation(A,B,C)
#get y from line equation
y1=slope*x1+intercept
y2=slope*x2+intercept
if direction=='inner':
#take the one between pivot and measure points
datapoint=min([(x1,y1),(x2,y2)],
key=lambda x:euclidean_distance(x,measure))
else:
#take the one farther away from measure points
datapoint=max([(x1,y1),(x2,y2)],
key=lambda x:euclidean_distance(x,measure))
return datapoint
# In[6]:
#recursively plot symmetric pythagorean tree at 45 degree
# https://larryriddle.agnesscott.org/ifs/pythagorean/pythTree.htm
def pythagorean_tree(ax,top_left,top_right,bottom_left,
bottom_right,current_angle,line_len,n):
#plot square
ax.add_patch(plt.Rectangle(xy=bottom_left,width=line_len,height=line_len,
angle=current_angle,))
if n==0:
return
else:
#find mid point
#midpoint has to satisfy two conditions
#it has to be on the same line as bottom_left and bottom_right
#assume this line follows y=kx+b
#the midpoint is (x,kx+b)
#bottom_left is (α,kα+b),bottom_right is (δ,kδ+b)
#the euclidean distance between midpoint and bottom_left should be
#half of the euclidean distance between bottom_left and bottom_right
#(x-α)**2+(kx+b-kα-b)**2=((α-δ)**2+(kα+b-kδ-b)**2)/4
#apart from x,everything else in the equation is constant
#this forms a simple quadratic solution to get two roots
#one root would be between bottom_left and bottom_right which yields midpoint
#and the other would be farther away from bottom_right
#this function solves the equation via (-B+(B**2-4*A*C)**0.5)/(2*A)
#alternatively,you can use scipy.optimize.root
#the caveat is it does not offer both roots
#a wrong initial guess could take you to the wrong root
bottom_mid=get_datapoint(bottom_left,bottom_right,line_len/2)
top_mid=get_datapoint(top_left,top_right,line_len/2)
#compute the top point of a triangle
#the computation is similar to midpoint
#the euclidean distance between triangle_top and top_mid should be
#half of the distance between top_mid and bottom_mid
triangle_top=get_datapoint(top_mid,bottom_mid,
line_len/2,direction='outer')
#get top left for right square
#the computation is similar to midpoint
#the euclidean distance between triangle_top and rightsq_topleft
#should be the same as the distance between triangle_top and top_left
rightsq_topleft=get_datapoint(triangle_top,top_left,
line_len/(2**0.5),direction='outer')
#get midpoint of the diagonal between rightsq_topleft and top_right
#the computation is similar to midpoint
#the euclidean distance between rightsq_diag_mid and rightsq_topleft
#should be half of the distance between rightsq_topleft and top_right
rightsq_diag_mid=get_datapoint(top_right,rightsq_topleft,line_len/2)
rightsq_topright=get_datapoint(rightsq_diag_mid,triangle_top,
line_len/2,direction='outer')
#get top left and right for left square similar to right square
leftsq_topleft=get_datapoint(triangle_top,rightsq_topright,
line_len,direction='outer')
leftsq_topright=get_datapoint(triangle_top,top_right,
line_len/(2**0.5),direction='outer')
#recursive do the same for left square
pythagorean_tree(ax,leftsq_topleft,leftsq_topright,
top_left,triangle_top,current_angle+45,
line_len/(2**0.5),n-1)
#recursive do the same for right square
pythagorean_tree(ax,rightsq_topleft,rightsq_topright,
triangle_top,top_right,current_angle-45,
line_len/(2**0.5),n-1)
# In[7]:
#initialize
top_left=(0,0)
top_right=(1,0)
bottom_left=(0,-1)
bottom_right=(1,-1)
n=5
current_angle=0
line_len=euclidean_distance(top_left,top_right)
# In[8]:
#viz
ax=plt.figure(figsize=(10,8)).add_subplot(111)
pythagorean_tree(ax,top_left,top_right,bottom_left,
bottom_right,current_angle,line_len,n)
#limit figure dimension for better viz
plt.ylim(min([bottom_left[1],bottom_right[1]]),
max([top_left[1],top_right[1]])+euclidean_distance(
top_left,top_right)*(n-2)
)
plt.xlim(min([bottom_left[0],top_left[0]])-euclidean_distance(
top_left,top_right)*(n-1)/2,
max([bottom_right[0],top_right[0]])+euclidean_distance(
top_left,top_right)*(n-1)/2,
)
plt.axis('off')
plt.show()