-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathfetch.py
596 lines (480 loc) · 21.1 KB
/
fetch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
#!/usr/bin/env python
# Copyright 2018 - 2020 Dr. Jan-Philip Gehrcke
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
import argparse
import logging
import os
import json
from datetime import datetime
import sys
from typing import Tuple
import pandas as pd
from github import Github, Repository # type: ignore
import requests
import retrying # type: ignore
import pytz
"""
prior art
https://github.com/MTG/github-traffic
https://github.com/nchah/github-traffic-stats/
https://github.com/sangonzal/repository-traffic-action
makes use of code and methods from my other projects at
https://github.com/jgehrcke/dcos-dev-prod-analysis
https://github.com/jgehrcke/bouncer-log-analysis
https://github.com/jgehrcke/goeffel
"""
log = logging.getLogger()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s.%(msecs)03d %(levelname)s:%(threadName)s: %(message)s",
datefmt="%y%m%d-%H:%M:%S",
)
# Get tz-aware datetime object corresponding to invocation time.
# Note: could do `datetime.now(timezone.utc)` instead these days.
NOW = pytz.timezone("UTC").localize(datetime.utcnow())
INVOCATION_TIME_STRING = NOW.strftime("%Y-%m-%d_%H%M%S")
if not os.environ.get("GHRS_GITHUB_API_TOKEN", None):
sys.exit("error: environment variable GHRS_GITHUB_API_TOKEN empty or not set")
GHUB = Github(login_or_token=os.environ["GHRS_GITHUB_API_TOKEN"].strip(), per_page=100)
def main() -> None:
args = parse_args()
# Full name of repo with slash (including owner/org)
repo: Repository.Repository = GHUB.get_repo(args.repo)
log.info("Working with repository `%s`", repo)
log.info("Request quota limit: %s", GHUB.get_rate_limit())
(
df_views_clones,
df_referrers_snapshot_now,
df_paths_snapshot_now,
) = fetch_all_traffic_api_endpoints(repo)
outdir_path = args.snapshot_directory
log.info("current working directory: %s", os.getcwd())
log.info("write output CSV files to directory: %s", outdir_path)
if len(df_views_clones):
df_views_clones.to_csv(
os.path.join(
outdir_path,
f"{INVOCATION_TIME_STRING}_views_clones_series_fragment.csv",
)
)
else:
log.info("do not write df_views_clones: empty")
if len(df_referrers_snapshot_now):
df_referrers_snapshot_now.to_csv(
os.path.join(
outdir_path, f"{INVOCATION_TIME_STRING}_top_referrers_snapshot.csv"
)
)
else:
log.info("do not write df_referrers_snapshot_now: empty")
if len(df_paths_snapshot_now):
df_paths_snapshot_now.to_csv(
os.path.join(
outdir_path, f"{INVOCATION_TIME_STRING}_top_paths_snapshot.csv"
)
)
else:
log.info("do not write df_paths_snapshot_now: empty")
if args.fork_ts_outpath:
fetch_and_write_fork_ts(repo, args.fork_ts_outpath)
if args.stargazer_ts_outpath:
fetch_and_write_stargazer_ts(repo, args)
log.info("done!")
def fetch_and_write_stargazer_ts(repo: Repository.Repository, args):
"""
Fetch the complete stargazer timeseries as provided by the GitHub HTTP API.
Remarks:
- Each stargazer is represented ("raw" timeseries), analzye.py downsamples
to one datapoint per day (this is the timeseries one that is persisted
via git, not the "raw" one).
- Only the first 40k stargazers are represented; we assemble additional
history based on periodically obtained snapshots.
Idea: fetch both.
"""
# The JSON response to https://api.github.com/repos/<org>/<repo> contains
# the current stargazer count, not subject to the 40k limit. Fetching this
# periodically allows for building up a stargazer timeseries beyond said
# limit. Also see https://github.com/jgehrcke/github-repo-stats/issues/76
current_stargazer_count = repo.stargazers_count
log.info(
"current stargazer count as reported by repo properties: %s",
current_stargazer_count,
)
# Prepare current snapshot as pandas DataFrame. Will either be
# - appended to existing dataset (CSV file existing)
# - used to create a fresh dataset (no CSV file existing)
# - dropped (CSV file existing, but stargazer count did not change)
current_snapshot_df = pd.DataFrame(
data={"stargazers_cumulative_snapshot": [current_stargazer_count]},
index=pd.to_datetime([NOW.replace(microsecond=0)]),
)
current_snapshot_df.index.name = "time"
updated_sdf = None
if os.path.exists(args.stargazer_ts_snapshots_inoutpath):
log.info("read %s", args.stargazer_ts_snapshots_inoutpath)
sdf = pd.read_csv( # type: ignore
args.stargazer_ts_snapshots_inoutpath,
index_col=["time_iso8601"],
date_parser=lambda col: pd.to_datetime(col, utc=True),
)
sdf.index.rename("time", inplace=True)
log.info(
"stargazers_cumulative_snapshot, raw data from %s:\n%s",
args.stargazer_ts_snapshots_inoutpath,
sdf["stargazers_cumulative_snapshot"],
)
if current_stargazer_count == sdf["stargazers_cumulative_snapshot"].iloc[-1]:
log.info("current stargazer count matches last snapshot, skip update")
# As an optimization, in this case we also do not need to fetch the
# complete stargazer timeseries below; and can simply return from
# this function
return
else:
log.info("stargazer count changed; append snapshot to existing history")
updated_sdf = pd.concat([sdf, current_snapshot_df]) # type: ignore
else:
# Data file does not exist yet (first time invocation?). Start building
# up this timeseries: create this data file, containing precisely one
# data point. I hope this is an integer for the special case of 0/zero
# stargazers.
log.info("does not exist yet: %s", args.stargazer_ts_snapshots_inoutpath)
updated_sdf = current_snapshot_df
if updated_sdf is not None:
tmppath = args.stargazer_ts_snapshots_inoutpath + ".tmp" # todo: rnd string
# The idea here is to write the snapshot-based history before the 40k
# limit is reached to not have too divergent code paths between types
# of repos.
log.info(
"write cumulative/snapshot-based stargazer time series to %s, then rename to %s",
tmppath,
args.stargazer_ts_snapshots_inoutpath,
)
updated_sdf.to_csv(tmppath, index_label="time_iso8601")
os.rename(tmppath, args.stargazer_ts_snapshots_inoutpath)
if current_stargazer_count > 40000:
if os.path.exists(args.stargazer_ts_outpath):
log.info("40k limit crossed; skip (re)fetching entire stargazer timeseries")
return
log.info(
"40k limit crossed, but %s does not exist yet -- fetch first 40k",
args.stargazer_ts_outpath,
)
dfstarscsv = get_stars_over_time_40k_limit(repo)
log.info("stars_cumulative, for CSV file:\n%s", dfstarscsv)
tpath = args.stargazer_ts_outpath + ".tmp" # todo: rnd string
log.info(
"write stargazer time series to %s, then rename to %s",
tpath,
args.stargazer_ts_outpath,
)
dfstarscsv.to_csv(tpath, index_label="time_iso8601")
os.rename(tpath, args.stargazer_ts_outpath)
def fetch_and_write_fork_ts(repo: Repository.Repository, path: str):
dfforkcsv = get_forks_over_time(repo)
log.info("forks_cumulative, for CSV file:\n%s", dfforkcsv)
tpath = path + ".tmp" # todo: rnd string
log.info(
"write fork time series to %s, then rename to %s",
tpath,
path,
)
dfforkcsv.to_csv(tpath, index_label="time_iso8601")
os.rename(tpath, path)
def fetch_all_traffic_api_endpoints(
repo,
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
log.info("fetch top referrers")
df_referrers_snapshot_now = referrers_to_df(fetch_top_referrers(repo))
log.info("fetch top paths")
df_paths_snapshot_now = paths_to_df(fetch_top_paths(repo))
log.info("fetch data for clones")
df_clones = clones_or_views_to_df(fetch_clones(repo), "clones")
log.info("fetch data for views")
df_views = clones_or_views_to_df(fetch_views(repo), "views")
# Note that df_clones and df_views should have the same datetime index, but
# there is no guarantee for that. Create two separate data frames, then
# merge / align dynamically.
if not df_clones.index.equals(df_views.index):
log.info("special case: df_views and df_clones have different index")
else:
log.info("indices of df_views and df_clones are equal")
log.info("union-merge views and clones")
# https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#set-logic-on-the-other-axes
# Build union of the two data frames. Zero information loss, in case the
# two indices aree different.
df_views_clones = pd.concat([df_clones, df_views], axis=1, join="outer")
log.info("df_views_clones:\n%s", df_views_clones)
return df_views_clones, df_referrers_snapshot_now, df_paths_snapshot_now
def parse_args():
parser = argparse.ArgumentParser(
description="Fetch traffic data for GitHub repository. Requires the "
"environment variables GITHUB_USERNAME and GITHUB_APITOKEN to be set."
)
parser.add_argument(
"repo",
metavar="REPOSITORY",
help="Owner/organization and repository. Must contain a slash. "
"Example: coke/truck",
)
parser.add_argument(
"--snapshot-directory",
type=str,
default="",
help="Snapshot/fragment directory. Default: _ghrs_{owner}_{repo}",
)
parser.add_argument(
"--fork-ts-outpath",
default="",
metavar="PATH",
help="Fetch fork time series and write to this CSV file. Overwrite if file exists.",
)
parser.add_argument(
"--stargazer-ts-outpath",
default="",
metavar="PATH",
help="Fetch stargazer time series and write to this CSV file. Overwrite if file exists.",
)
# TODO: make this required
parser.add_argument(
"--stargazer-ts-snapshots-inoutpath",
default="",
metavar="PATH",
help="read/write stargazer time series snapshots, overwrite (append to) file if exists",
)
args = parser.parse_args()
if "/" not in args.repo:
sys.exit("missing slash in REPOSITORY spec")
ownerid, repoid = args.repo.split("/")
outdir_path_default = f"_ghrs_{ownerid}_{repoid}"
if not args.snapshot_directory:
args.snapshot_directory = outdir_path_default
log.info("processed args: %s", json.dumps(vars(args), indent=2))
if os.path.exists(args.snapshot_directory):
if not os.path.isdir(args.snapshot_directory):
log.error(
"the specified output directory path does not point to a directory: %s",
args.snapshot_directory,
)
sys.exit(1)
log.info("output directory already exists: %s", args.snapshot_directory)
else:
log.info("create output directory: %s", args.snapshot_directory)
log.info("absolute path: %s", os.path.abspath(args.snapshot_directory))
# If there is a race: do not error out.
os.makedirs(args.snapshot_directory, exist_ok=True)
return args
def referrers_to_df(top_referrers) -> pd.DataFrame:
series_referrers = []
series_views_unique = []
series_views_total = []
for p in top_referrers:
series_referrers.append(p.referrer)
series_views_total.append(int(p.count))
series_views_unique.append(int(p.uniques))
df = pd.DataFrame(
data={
"views_total": series_views_total,
"views_unique": series_views_unique,
},
index=series_referrers,
)
df.index.name = "referrer"
# Attach metadata to dataframe, still experimental -- also see
# https://stackoverflow.com/q/52122674/145400
df.attrs["snapshot_time"] = NOW.isoformat()
return df
def paths_to_df(top_paths) -> pd.DataFrame:
series_url_paths = []
series_views_unique = []
series_views_total = []
for p in top_paths:
series_url_paths.append(p.path)
series_views_total.append(int(p.count))
series_views_unique.append(int(p.uniques))
df = pd.DataFrame(
data={
"views_total": series_views_total,
"views_unique": series_views_unique,
},
index=series_url_paths,
)
df.index.name = "url_path"
# Attach metadata to dataframe, new as of pandas 1.0 -- also see
# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html
# https://github.com/pandas-dev/pandas/issues/28283
# https://stackoverflow.com/q/52122674/145400
df.attrs["snapshot_time"] = NOW.isoformat()
return df
def clones_or_views_to_df(items, metric) -> pd.DataFrame:
assert metric in ["clones", "views"]
series_count_total = []
series_count_unique = []
series_timestamps = []
for sample in items:
# GitHub API docs say "Timestamps are aligned to UTC".
# `sample.timestamp` is a tz-naive datetime object.
series_timestamps.append(sample.timestamp)
series_count_total.append(int(sample.count))
series_count_unique.append(int(sample.uniques))
# Attach timezone information to `pd.DatetimeIndex` (make this index
# tz-aware, leave actual numbers intact).
df = pd.DataFrame(
data={
f"{metric}_total": series_count_total,
f"{metric}_unique": series_count_unique,
},
index=pd.DatetimeIndex(data=series_timestamps, tz="UTC"),
)
df.index.name = "time_iso8601"
log.info("built dataframe for %s:\n%s", metric, df)
log.info("dataframe datetimeindex detail: %s", df.index)
return df
def get_forks_over_time(repo: Repository.Repository) -> pd.DataFrame:
# TODO: for ~10k forks repositories, this operation is too costly for doing
# it as part of each analyzer invocation. Move this to the fetcher, and
# persist the data.
log.info("fetch fork time series for repo %s", repo)
reqlimit_before = GHUB.get_rate_limit().core.remaining
log.info("GH request limit before operation: %s", reqlimit_before)
forks = []
for count, fork in enumerate(repo.get_forks(), 1):
# Store `PullRequest` object with integer key in dictionary.
forks.append(fork)
if count % 200 == 0:
log.info("%s forks fetched", count)
reqlimit_after = GHUB.get_rate_limit().core.remaining
log.info("GH request limit after operation: %s", reqlimit_after)
log.info("http requests made (approximately): %s", reqlimit_before - reqlimit_after)
log.info("current fork count: %s", len(forks))
# The GitHub API returns ISO 8601 timestamp strings encoding the timezone
# via the Z suffix, i.e. Zulu time, i.e. UTC. pygithub doesn't parse that
# timezone. That is, whereas the API returns `starred_at` in UTC, the
# datetime obj created by pygithub is a naive one. Correct for that.
forktimes_aware = [pytz.timezone("UTC").localize(f.created_at) for f in forks]
# Create sorted pandas DatetimeIndex
dtidx = pd.to_datetime(forktimes_aware)
dtidx = dtidx.sort_values()
# Each timestamp corresponds to *1* fork event. Build cumulative sum over
# time.
df = pd.DataFrame(
data={"fork_events": [1] * len(forks)},
index=dtidx,
)
df.index.name = "time"
df["forks_cumulative"] = df["fork_events"].cumsum()
df = df.drop(columns=["fork_events"]).astype(int)
log.info("forks df: \n%s", df)
return df
def get_stars_over_time_40k_limit(repo: Repository.Repository) -> pd.DataFrame:
"""
Fetch stargazer-over-time from beginning of time. This returns at most
the oldest 40.000 stargazers (a GitHub HTTP API limitation, see
https://github.com/jgehrcke/github-repo-stats/issues/76).
"""
# TODO: for ~10k stars repositories, this operation is too costly for doing
# it as part of each analyzer invocation. Move this to the fetcher, and
# persist the data.
log.info("fetch stargazer time series for repo %s", repo)
reqlimit_before = GHUB.get_rate_limit().core.remaining
log.info("GH request limit before fetch operation: %s", reqlimit_before)
gazers = []
# TODO for addressing the 10ks challenge: save state to disk, and refresh
# using reverse order iteration. See for repo in user.get_repos().reversed
for count, gazer in enumerate(repo.get_stargazers_with_dates(), 1):
# Store `PullRequest` object with integer key in dictionary.
gazers.append(gazer)
if count % 200 == 0:
log.info("%s gazers fetched", count)
reqlimit_after = GHUB.get_rate_limit().core.remaining
log.info("GH request limit after fetch operation: %s", reqlimit_after)
log.info("http requests made (approximately): %s", reqlimit_before - reqlimit_after)
log.info("stargazer count: %s", len(gazers))
# The GitHub API returns ISO 8601 timestamp strings encoding the timezone
# via the Z suffix, i.e. Zulu time, i.e. UTC. pygithub doesn't parze that
# timezone. That is, whereas the API returns `starred_at` in UTC, the
# datetime obj created by pygithub is a naive one. Correct for that.
startimes_aware = [pytz.timezone("UTC").localize(g.starred_at) for g in gazers]
# Work towards a dataframe of the following shape:
# star_events stars_cumulative
# time
# 2020-11-26 16:25:37+00:00 1 1
# 2020-11-26 16:27:23+00:00 1 2
# 2020-11-26 16:30:05+00:00 1 3
# 2020-11-26 17:31:57+00:00 1 4
# 2020-11-26 17:48:48+00:00 1 5
# ... ... ...
# 2020-12-19 19:48:58+00:00 1 327
# 2020-12-22 04:44:35+00:00 1 328
# 2020-12-22 19:00:42+00:00 1 329
# 2020-12-25 05:01:42+00:00 1 330
# 2020-12-28 01:07:55+00:00 1 331
# Create sorted pandas DatetimeIndex
dtidx = pd.to_datetime(startimes_aware)
dtidx = dtidx.sort_values()
# Each timestamp corresponds to *1* star event. Build cumulative sum over
# time.
df = pd.DataFrame(
data={"star_events": [1] * len(gazers)},
index=dtidx,
)
df.index.name = "time"
df["stars_cumulative"] = df["star_events"].cumsum()
df = df.drop(columns=["star_events"]).astype(int)
log.info("stargazer df\n %s", df)
return df
def handle_rate_limit_error(exc):
if "wait a few minutes before you try again" in str(exc):
log.warning("GitHub abuse mechanism triggered, wait 60 s, retry")
return True
needles_perm_err = [
"Resource not accessible by integration",
"Must have push access to repository",
]
if "403" in str(exc):
for needle in needles_perm_err:
if needle in str(exc):
log.error(
'this appears to be a permanent error, as in "access denied -- do not retry": %s',
str(exc),
)
sys.exit(1)
log.warning("Exception contains 403, wait 60 s, retry: %s", str(exc))
# The request count quota is not necessarily responsible for this
# exception, but it usually is. Log the expected local time when the
# new quota arrives.
unix_timestamp_quota_reset = GHUB.rate_limiting_resettime
local_time = datetime.fromtimestamp(unix_timestamp_quota_reset)
log.info("New req count quota at: %s", local_time.strftime("%Y-%m-%d %H:%M:%S"))
return True
# For example, `RemoteDisconnected` is a case I have seen in production.
if isinstance(exc, requests.exceptions.RequestException):
log.warning("RequestException, wait 60 s, retry: %s", str(exc))
return True
return False
@retrying.retry(wait_fixed=60000, retry_on_exception=handle_rate_limit_error)
def fetch_clones(repo):
clones = repo.get_clones_traffic()
return clones["clones"]
@retrying.retry(wait_fixed=60000, retry_on_exception=handle_rate_limit_error)
def fetch_views(repo):
views = repo.get_views_traffic()
return views["views"]
@retrying.retry(wait_fixed=60000, retry_on_exception=handle_rate_limit_error)
def fetch_top_referrers(repo):
return repo.get_top_referrers()
@retrying.retry(wait_fixed=60000, retry_on_exception=handle_rate_limit_error)
def fetch_top_paths(repo):
return repo.get_top_paths()
if __name__ == "__main__":
main()