-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.py
32 lines (26 loc) · 1.68 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
RANDOM_STATE = 42
# CLASSIFIERS = ["svm", "linear_discriminant", "kneighbors",
# "decision_tree", "gaussian_nb", "gradient_boosting"]
CLASSIFIERS = ["svm", "logistic_regression", "linear_discriminant", "kneighbors",
"decision_tree", "gaussian_nb", "random_forest", "gradient_boosting"]
# CLASSIFIERS = ["svm", "kneighbors",
# "decision_tree", "gaussian_nb", "random_forest", "gradient_boosting"]
# CLASSIFIERS = ["svm", "kneighbors",
# "decision_tree", "gaussian_nb", "random_forest"]
#"neural_network"]
# REGRESSORS = [ "svm", "knn","gradient_boosting", "random_forest", "decision_tree", "random", "default"]
REGRESSORS = [ "ann", "cart", "randomForest", "dwnn", "svm", "random", "default"]
# REGRESSORS = [ "ann", "cart", "randomForest", "dwnn", "random", "default"]
CLASSIFIERS_SCORES = ["recall_micro", "recall_macro", "accuracy", "precision_micro",
"precision_macro", "f1_micro", "f1_macro",
"balanced_accuracy",
"fit_time", "score_time"]
REGRESSORS_SCORES = ["max_error", "mean_absolute_error", "r2_score", "median_absolute_error",
"mean_squared_error"]
# PRE_PROCESSES = ["SMOTE", "RandomUnder", "HARF", "AENN"]
PRE_PROCESSES = ["SMOTE", "RandomUnder", "HARF", "ENN"]
# PRE_PROCESSES = ["SMOTE", "ADASYN", "HARF", "AENN"]
# CLASSIFIERS_SCORES = ["recall_micro", "recall_macro", "accuracy", "precision_micro",
# "precision_macro", "f1_micro", "f1_macro", "fit_time", "score_time"]
# REG_ORDER = ["SVM", "kNN", "GB", "RF", "DT", "Random", "Default"]
REG_ORDER = ["ANN", "CART", "RF", "DWNN", "SVM", "DT", "Random", "Default"]