-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregressors_optimized.py
148 lines (121 loc) · 5.56 KB
/
regressors_optimized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import sys
import os
import pandas as pd
import numpy as np
import pickle
from sklearn import svm, linear_model, discriminant_analysis, neighbors
from sklearn import tree, naive_bayes, ensemble, neural_network, gaussian_process
from sklearn.model_selection import cross_validate, KFold, GridSearchCV, RandomizedSearchCV
from sklearn import metrics
from sklearn import preprocessing
from sklearn.utils import check_array
import constants
from Default import Default
from Random import Random
from meta_db.db.DBHelper import DBHelper
from optimizations.helpers import *
db = DBHelper()
SCORE_COLUMNS = ["name"] + constants.CLASSIFIERS
SCORES = ["max_error", "mean_absolute_error", "r2_score", "median_absolute_error", "mean_squared_error"]
CLF_SCORE = "f1_macro"
metadata = pd.DataFrame(db.get_all_metadata(), columns = db.metadata_columns()).drop("id", axis = 1)
models = pd.DataFrame(db.get_all_models(), columns = db.models_columns()).drop("id", axis = 1)
combinations = pd.DataFrame(db.get_all_combinations(), columns = db.combinations_columns())
preperformance = pd.DataFrame(db.get_all_preperformance(), columns = db.preperformance_columns()).drop("id", axis = 1)
# Not null preperformance
preperformance = preperformance[~preperformance.isnull().any(axis = 1)]
preperformance = pd.merge(preperformance, combinations, left_on = "combination_id", right_on = "id").drop(["combination_id", "id", "num_preprocesses"], axis = 1)
models = models.rename(columns = {"model": "classifier"})
models["preprocesses"] = "None"
scores = pd.concat([models, preperformance], sort = False)
scores = scores[scores.classifier != "neural_network"]
models = models[models.classifier != "neural_network"]
metadata_means = {feature: np.mean(metadata[feature]) for feature in metadata.columns if feature != "name"}
metadata.fillna(value = metadata_means, inplace = True)
data = pd.merge(metadata, scores, on = "name")
reg_models = {}
# reg_models["neural_network"] = {}
# reg_models["neural_network"]["model"] = neural_network.MLPRegressor()
# reg_models["neural_network"]["params"] = {
# "hidden_layer_sizes": [50, 100, 150],
# "solver": ["sgd", "adam"]
# }
#
# reg_models["ridge"] = {}
# reg_models["ridge"]["model"] = linear_model.Ridge()
# reg_models["ridge"]["params"] = {
# "alpha": [0.5, 1.0, 1.5],
# "solver": ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga"]
# }
#
# reg_models["gradient_descent"] = {}
# reg_models["gradient_descent"]["model"] = linear_model.SGDRegressor()
# reg_models["gradient_descent"]["params"] = {
# "loss": ["squared_loss", "huber", "epsilon_insensitive", "squared_epsilon_insensitive"],
# "penalty": ["l2", "l1", "elasticnet"]
# }
reg_models["svm"] = {}
reg_models["svm"]["model"] = svm.SVR(gamma = "auto")
reg_models["svm"]["params"] = {
"kernel": ["rbf"],
"C": [0.1, 0.3, 0.5, 0.7, 1.0, 5, 10, 50, 100],
}
reg_models["knn"] = {}
reg_models["knn"]["model"] = neighbors.KNeighborsRegressor()
reg_models["knn"]["params"] = {
"n_neighbors": [3, 5, 7, 13, 15, 30]
}
reg_models["random_forest"] = {}
reg_models["random_forest"]["model"] = ensemble.RandomForestRegressor()
reg_models["random_forest"]["params"] = {
"n_estimators": [100, 200, 500, 600, 700, 800, 1000]
}
# reg_models["gaussian_process"] = {}
# reg_models["gaussian_process"]["model"] = gaussian_process.GaussianProcessRegressor()
# reg_models["gaussian_process"]["params"] = {
# "n_restarts_optimizer": [0, 1, 2]
# }
#
reg_models["decision_tree"] = {}
reg_models["decision_tree"]["model"] = tree.DecisionTreeRegressor()
reg_models["decision_tree"]["params"] = {
"splitter": ["best", "random"],
"min_samples_split": [2, 3, 4, 7, 10]
}
mean_scores = []
std_scores = []
for score in constants.CLASSIFIERS_SCORES:
mean_scores.append(score + "_mean")
std_scores.append(score + "_std")
if not os.path.exists("regressors"):
os.makedirs("regressors")
divideFold = KFold(10, random_state = constants.RANDOM_STATE, shuffle = True)
# add cross cross_validate
regressors = {}
targets = {}
results = {}
score = CLF_SCORE
print("SCORE = {}".format(score))
for clf in constants.CLASSIFIERS:
results[clf] = {}
for preprocess in ['None'] + constants.PRE_PROCESSES:
results[clf][preprocess] = {}
regressors[clf] = {}
regressors[clf][preprocess] = {}
# Getting target value per classifier and preprocessor
targets[clf] = {}
targets[clf][preprocess] = data.query("classifier == '{}' and preprocesses == '{}'".format(clf, preprocess))
regressors[clf][preprocess][score] = {}
values = check_array(targets[clf][preprocess].drop(["name", "classifier", "preprocesses", *mean_scores, *std_scores], axis = 1).to_numpy().astype(np.float64))
target = targets[clf][preprocess][score + "_mean"].astype(np.float64).to_numpy(dtype = 'float64')
for reg in reg_models.keys():
results[clf][preprocess][reg] = {}
results[clf][preprocess][reg]["name"] = reg
results[clf][preprocess][reg]["params"] = []
for train_indx, test_indx in divideFold.split(values):
opt_reg = GridSearchCV(reg_models[reg]["model"], reg_models[reg]["params"], cv = 5, n_jobs = -1, scoring = "neg_root_mean_squared_error", verbose = 2) # holdout 2/3 para treino e 1/3 para teste
model = opt_reg.fit(values[train_indx], target[train_indx])
print("[pp: {}, clf: {}] Best parameters set [{}] found on development set:".format(preprocess, clf, reg))
print(model.best_params_, "\n")
results[clf][preprocess][reg]["params"].append(model.best_params_)
save_opt(results, score)