-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_figures.py
537 lines (448 loc) · 19.1 KB
/
plot_figures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# -*- coding: utf-8 -*-
import argparse
import json, math, seaborn
import statistics
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from typing import List
# del matplotlib.font_manager.weight_dict['roman']
matplotlib.font_manager._rebuild()
GLOBAL_FIGURE_WIDTH = 8
dpi = 800
# plt.rcParams["font.weight"] = "light"
plt.rcParams.update({'font.size': 14})
# plt.rcParams["font.family"] = "Times New Roman"
plt.rcParams['font.family'] = 'DejaVu Sans'
import random
def read_json_file(fname):
with open(fname, 'r') as fd:
x = fd.read()
data = json.loads(x)
return data
datasets = ['cnndm', 'xsum']
import os
# dir_datadrive = '/content/drive/My Drive/prob_gpt_data/'
dir_datadrive = '/Users/user/Downloads/'
dir_datadrive = '/mnt/data0/jcxu/data/prob_gpt'
"""## Correlation of Copy/Gen & Prediction Entropy
Datasets: CNNDM, XSUM
Several axis here: Relative Position in Sentence; IsBigram/Trigram (identifies copy or generation), Prediction Entropy
Figure: X - Prediction *entropy*; Y - Number of example; Color/Label: is or is not Bigram
"""
# from google.colab import drive
# drive.mount('/content/drive')
# {}_entropy.json
# [t: current time step, l: total length of the sequence, ent, max_prob, tokens[t], bigran, trigram]
# Density: x: entropy, two plots: is bigram or not
FIG_SIZE_x = GLOBAL_FIGURE_WIDTH
FIG_SIZE_y = 3
ysize_fig1 = 4
ysize_figure2 = 4
ysize_figure3 = 4
debug = True
debug = False
def _read_data_position_fig2(dir, spec_name, SEPS):
data = read_json_file(os.path.join(dir, f"{spec_name}_pos_entropy.json"))
data_for_panda = []
random.shuffle(data)
print(f"Len of data: {len(data)} Name: {spec_name}")
if debug:
data = data[:1000]
for d in data:
if d[1] <= 1:
continue
relative_position = int(math.floor(d[0] * SEPS / (d[1]))) / SEPS
new_data = [relative_position, d[2]]
data_for_panda.append(new_data)
print("Finish reading data")
keys = ['Relative Position', 'Entropy']
df = pd.DataFrame(data_for_panda, columns=keys)
return df
def _read_data(dir, spec_name, SEPS):
data = read_json_file(os.path.join(dir, f"{spec_name}_entropy.json"))
data_for_panda = []
bigram_entropies, not_bigram_entropies = [], []
random.shuffle(data)
print(f"Len of data: {len(data)} Name: {spec_name}")
if debug:
data = data[:1000]
for d in data:
if d[1] <= 1:
continue
relative_position = int(math.floor(d[0] * SEPS / (d[1]))) / SEPS
new_data = d[2:] + [relative_position]
entropy = new_data[0]
max_prob = new_data[1]
# entropy = max_prob
if new_data[3]:
bigram_entropies.append(entropy)
else:
not_bigram_entropies.append(entropy)
data_for_panda.append(new_data)
print("Finish reading data")
keys = ['Entropy', 'Top1 Prob', 'token', 'Bigram ', 'InTrigramOfDocument', 'Relative Position']
df = pd.DataFrame(data_for_panda, columns=keys)
return df, bigram_entropies, not_bigram_entropies
def normalize_figure1(bigram: List, not_bigram: List, cnt=10000):
if len(bigram) + len(not_bigram) > cnt:
rate = len(bigram) + len(not_bigram)
ratio = cnt / rate
random.shuffle(bigram)
bigram = bigram[: int(len(bigram) * ratio)]
random.shuffle(not_bigram)
not_bigram = not_bigram[: int(len(not_bigram) * ratio)]
else:
print("NOT ENOUGH DATA")
raise ValueError
print(f"normalized len: {len(bigram)} + {len(not_bigram)}")
return bigram, not_bigram
def draw_x_entropy_y_bigram_count(dir, SEPS=10, FIG_SIZE_x=10, FIG_SIZE_y=3, bins_num=18,
cnndm_spec_name='cnndm', xsum_spec_name='xsum'):
ExistingBigram = "Existing Bigrams"
NovelBigram = "Novel Bigrams"
linewidth = 1.5
_, cnndm_bigram_entropies, cnndm_not_bigram_entropies = _read_data(dir, cnndm_spec_name, SEPS)
cnndm_bigram_entropies, cnndm_not_bigram_entropies = normalize_figure1(cnndm_bigram_entropies,
cnndm_not_bigram_entropies)
axes1 = plt.subplot(211)
# axes = fig.add_axes([0., 0.3, 0.84, 0.66])
# sns.distplot(x=ykey, data=df, hist=False, rug=True)
# axes = sns.distplot(bigram_entropies,rug=True)
# axes = sns.kdeplot(bigram_entropies, shade=True,cumulative=True)
# axes = sns.distplot(bigram_entropies,rug=True)
data = 'CNN/DM'
max_lim = 6
color = sns.color_palette("coolwarm", 7)
axes1 = sns.distplot(cnndm_bigram_entropies, bins=bins_num,
hist_kws={'range': [0, max_lim]},
hist=True,
kde=False,
color=color[0],
label=f"{ExistingBigram}"
)
# axes1.set_title("CNN/DM")
axes1.set_ylabel('CNN/DM')
axes1 = sns.distplot(cnndm_not_bigram_entropies, bins=bins_num, hist_kws={'range': [0, max_lim]},
hist=True,
kde=False,
color=color[-1],
label=f"{NovelBigram}"
)
plt.axvline(statistics.median(cnndm_bigram_entropies), color=color[0], linestyle='dashed', linewidth=linewidth)
plt.axvline(statistics.median(cnndm_not_bigram_entropies), color=color[-1], linestyle='dashed', linewidth=linewidth)
# axes.legend(prop={'size': 10})
axes1.legend(frameon=False)
# print(f"{statistics.median(cnndm_bigram_entropies), statistics.mean(cnndm_not_bigram_entropies),}")
print(f"{statistics.median(cnndm_bigram_entropies), statistics.median(cnndm_not_bigram_entropies),}")
plt.setp(axes1.get_xticklabels(), visible=False)
# axes = sns.distplot(not_bigram_entropies,rug=True)
# axes1.set_title('CNN\DM',loc='left')
# axes1.set_xlabel('Entropy')
_, xsum_bigram_entropies, xsum_not_bigram_entropies = _read_data(dir, xsum_spec_name, SEPS)
xsum_bigram_entropies, xsum_not_bigram_entropies = normalize_figure1(xsum_bigram_entropies,
xsum_not_bigram_entropies)
# axes = fig.add_axes([0., 0.3, 0.84, 0.66])
with sns.color_palette("Set2"):
axes2 = plt.subplot(212, sharex=axes1)
# axes2.set_title("XSum",loc='left')
axes2.set_ylabel('XSum')
data = 'XSum'
axes2 = sns.distplot(xsum_bigram_entropies, bins=bins_num,
hist_kws={'range': [0, max_lim], }, hist=True, kde=False,
# label=f"{ExistingBigram}",
color=color[0]
)
axes2 = sns.distplot(xsum_not_bigram_entropies, bins=bins_num,
hist_kws={'range': [0, max_lim], }, hist=True, kde=False,
# label=f"{NovelBigram}",
color=color[-1]
)
plt.axvline(statistics.median(xsum_bigram_entropies), color=color[0], linestyle='dashed', linewidth=linewidth)
plt.axvline(statistics.median(xsum_not_bigram_entropies), color=color[-1], linestyle='dashed',
linewidth=linewidth)
# axes.legend(prop={'size': 10})
# axes2.legend()
# axes = sns.distplot(not_bigram_entropies,rug=True)
# axes2.set_title('XSum')
axes2.set_xlabel('Entropy')
print(f"{statistics.median(xsum_bigram_entropies), statistics.mean(xsum_not_bigram_entropies),}")
print(f"{statistics.median(xsum_bigram_entropies), statistics.median(xsum_not_bigram_entropies),}")
def draw_fig_1(cnndm_spec_name,xsum_spec_name):
fig = plt.figure(figsize=(FIG_SIZE_x, ysize_fig1))
# plt.rcParams["font.weight"] = "light"
# plt.rcParams.update({'font.size': 15})
# plt.rcParams["font.family"] = "Times New Roman"
# cnndm_spec_name = 'd_cnn_dailymail-m_ymail-full1'
# xsum_spec_name = 'd_xsum-m_-xsum-full1'
draw_x_entropy_y_bigram_count(dir_datadrive, FIG_SIZE_x=GLOBAL_FIGURE_WIDTH,
cnndm_spec_name=cnndm_spec_name, xsum_spec_name=xsum_spec_name)
fig.tight_layout()
plt.savefig(f"x_entropy-y_bigram-{cnndm_spec_name}-{xsum_spec_name}.pdf", dpi=dpi)
plt.show()
plt.close()
"""Conclusion: for CNNDM, most of the actions are copy (Isbigram). Copy has strong correlation with Bigram.
## Token Position in the sentence - Entropy
"""
# Position related
import math
from matplotlib.axes._axes import Axes
def draw_x_rel_postion_y_entropy(dir, cnndm_spec_name, xsum_spec_name, SEPS=20, FIG_SIZE_x=10, FIG_SIZE_y=5):
cnndm_df = _read_data_position_fig2(dir, cnndm_spec_name, SEPS)
xsum_df = _read_data_position_fig2(dir, xsum_spec_name, SEPS)
colorblind = sns.color_palette("coolwarm", 10)[::-1]
keys = ['Relative Position', 'Entropy']
# axes = fig.add_axes([0.15, 0.3, 0.84, 0.66])
# sns.distplot(x=ykey, data=df, hist=False, rug=True)
# axes = sns.kdeplot(bigram_entropies)
# axes = sns.kdeplot(not_bigram_entropies)
#
axes1: Axes = plt.subplot(121)
max_lim = 7
sns.boxplot(x=keys[0], y=keys[1], data=cnndm_df,
fliersize=0,
# palette='coolwarm',
# color=colorblind[3],
palette=colorblind,
# notch=True,
)
# axes1.tick_params(which='major', length=5)
axes1.set_xticks([0, 2, 4, 6, 8])
axes1.set_xticklabels([0.0, 0.2, 0.4, 0.6, 0.8])
# for box in axes1['boxes']:
# # change outline color
# # box.set(color='#7570b3', linewidth=2)
# # change fill color
# box.set(edgecolor='white')
axes1.set_title('CNN/DM')
axes1.set_ylim(0, max_lim)
# axes1.set_ylabel('')
# axes1.legend()
axes2 = plt.subplot(122, sharey=axes1)
sns.boxplot(x=keys[0], y=keys[1], data=xsum_df,
# notch=True,
fliersize=0,
palette=colorblind,
# palette='Set2',
# color=colorblind,
)
axes2.set_xticks([0, 2, 4, 6, 8])
axes2.set_xticklabels([0.0, 0.2, 0.4, 0.6, 0.8])
axes2.set_ylabel('')
axes2.set_title('XSum')
axes2.set_ylim(0, max_lim)
# axes2.legend()
# plt.setp(axes2.get_yticks(), visible=False)
# axes2.set_xlabel('Relative Position in Sentence')
def draw_fig_2(cnndm_spec_name,xsum_spec_name):
fig = plt.figure(figsize=(FIG_SIZE_x, ysize_figure2))
# plt.rcParams["font.weight"] = "light"
# plt.rcParams.update({'font.size': 15})
# plt.rcParams["font.family"] = "Times New Roman"
# cnndm_spec_name = 'd_cnn_dailymail-m_ymail-full1'
# xsum_spec_name = 'd_xsum-m_-xsum-full1'
draw_x_rel_postion_y_entropy(dir_datadrive, cnndm_spec_name, xsum_spec_name, SEPS=10,
FIG_SIZE_x=GLOBAL_FIGURE_WIDTH)
fig.tight_layout()
plt.savefig(f"x_rel_postion_y_entropy{cnndm_spec_name}{xsum_spec_name}.pdf", dpi=dpi)
plt.show()
plt.close()
import numpy as np
def read_attention_data(data_name, dir='/Users/user/Downloads/', debug=False):
print(f"DATANAME: {data_name}")
fname = f"{data_name}_attention.json"
with open(os.path.join(dir, fname), 'r') as fd:
x = fd.read()
data = json.loads(x)
random.shuffle(data)
if debug:
data = data[:2000]
data_for_panda = []
flatten = lambda l: [item for sublist in l for item in sublist]
compar_set1 = ['last_inp', 'cur_inp', 'cur_pred', 'next_pred']
compar_set2 = ['top1_most_common', 'top1_distill_most_common', 'top3_distill_top3_common']
compars = flatten([[f"{x}x{y}" for y in compar_set2] for x in compar_set1])
keys = ['ent', 'emtpy_rate', 'layer']
SEPS = 10
tmp_empty = []
stat_empty, stat_ent = [], []
for d in data:
d_for_panda = {}
for k in keys:
d_for_panda[k] = d[k]
# d_for_panda['layer'] += 1
for k in compars:
d_for_panda[k] = d[k]
data_for_panda.append(d_for_panda
)
tmp_empty.append(d['emtpy_rate'])
if len(tmp_empty) == 12:
stat_empty.append(statistics.mean(tmp_empty))
stat_ent.append(d['ent'])
tmp_empty = []
df = pd.DataFrame(data_for_panda)
print(f"Empty rate: {stat_empty}")
return df
def draw_fig3_barplots(dataframe):
flatten = lambda l: [item for sublist in l for item in sublist]
compar_set1 = ['last_inp', 'cur_inp', 'cur_pred', 'next_pred']
compar_set2 = ['top1_most_common', 'top1_distill_most_common', 'top3_distill_top3_common']
compars = flatten([[f"{x}x{y}" for y in compar_set2] for x in compar_set1])
keys = ['ent', 'emtpy_rate', 'layer']
# max_ylim = 0.75
axes1 = plt.subplot(221)
axes1: Axes = sns.barplot(x=keys[-1], y=compars[0 + 1], data=dataframe)
axes1.set_title('Last Input')
# axes1.set_ylim(0, max_ylim)
axes1.set_xlabel('')
axes1.set_ylabel('')
# axes1.legend()
axes2 = plt.subplot(222)
axes2: Axes = sns.barplot(x=keys[-1], y=compars[1 * 3 + 1], data=dataframe)
axes2.set_title('Current Input')
axes2.set_xlabel('')
axes2.set_ylabel('')
# axes2.set_ylim(0, 1)
# axes2.set_title('XSum')
# axes2.set_ylim(0, 6)
axes3 = plt.subplot(223)
axes3: Axes = sns.barplot(x=keys[-1], y=compars[2 * 3 + 1], data=dataframe)
axes3.set_title('Current Prediction')
# axes3.set_ylim(0, max_ylim)
axes3.set_ylabel('')
axes4 = plt.subplot(224)
axes4: Axes = sns.barplot(x=keys[-1], y=compars[3 * 3 + 1], data=dataframe)
axes4.set_title('Next Prediction')
# axes4.set_ylim(0, 0.2)
axes4.set_ylabel('')
def read_data_fig3(dataframe):
flatten = lambda l: [item for sublist in l for item in sublist]
compar_set1 = ['last_inp', 'cur_inp', 'cur_pred', 'next_pred']
compar_set2 = ['top1_most_common', 'top1_distill_most_common', 'top3_distill_top3_common']
compars = flatten([[f"{x}x{y}" for y in compar_set2] for x in compar_set1])
keys = ['ent', 'emtpy_rate', 'layer']
max_ylim = 0.75
last_inpxtop1_distill_most_common = dataframe['last_inpxtop1_distill_most_common'].tolist()
cur_inpxtop1_distill_most_common = dataframe['cur_inpxtop1_distill_most_common'].tolist()
cur_predxtop1_distill_most_common = dataframe['cur_predxtop1_distill_most_common'].tolist()
next_predxtop1_distill_most_common = dataframe['next_predxtop1_distill_most_common'].tolist()
layer = dataframe['layer'].tolist()
from collections import Counter
cnts = [[Counter() for _ in range(4)] for _ in range(12)]
for l, li, ci, cp, nexp in zip(layer, last_inpxtop1_distill_most_common, cur_inpxtop1_distill_most_common,
cur_predxtop1_distill_most_common, next_predxtop1_distill_most_common):
cnts[l][0].update([li])
cnts[l][1].update([ci])
cnts[l][2].update([cp])
cnts[l][3].update([nexp])
bars = [[0 for _ in range(12)] for _ in range(4)]
for idx, cnt_lay in enumerate(cnts):
for jdx, cn in enumerate(cnt_lay):
t = cn[True]
f = cn[False]
n = cn[None]
# print(f"{idx}{jdx} {len(t)} {len(f)} {len(n)}")
bars[jdx][idx] = t / (t + f)
bar0 = bars[0]
bar1 = bars[1]
bar2 = bars[2]
bar3 = bars[3]
from operator import add
bar01 = np.add(bar0, bar1).tolist()
bar012 = np.add(bar01, bar2).tolist()
x = list(range(12))
return bar0, bar1, bar2, bar3, bar01, bar012, x
def draw_fig3_stackbarplots():
colorblind = sns.color_palette("coolwarm", 4)
catnames = ['$y_{t-2}$', '$y_{t-1}$',
'$y_{t}$', '$y_{t+1}$']
data = 'cnndm'
dataframe = read_attention_data(data)
bar0, bar1, bar2, bar3, bar01, bar012, x = read_data_fig3(dataframe)
ax1: Axes = plt.subplot(121)
ax1.set_ylim(0, 1.1)
ax1.set_title("CNN/DM")
# ax1.set_xticks(list(range(12)))
# ax1.set_xticklabels(list(range(1,13)))
ax1.set_xticks([0, 2, 4, 6, 8, 10])
ax1.set_xticklabels([1, 3, 5, 7, 9, 11])
ax1.set_ylabel("Aggregate Probability")
ax1.set_xlabel("Self-Attention Layer")
x = list(range(12))
plt.bar(x, bar0, color=colorblind[0], label=catnames[0])
plt.bar(x, bar1, bottom=bar0, color=colorblind[1], label=catnames[1]
# ,hatch='-'
)
plt.bar(x, bar2, bottom=bar01, color=colorblind[2], label=catnames[2]
# ,hatch='|'
)
plt.bar(x, bar3, bottom=bar012, color=colorblind[3], label=catnames[3]
# hatch='/'
)
# plt.legend(ncol=2,frameon=False)
data = 'xsum'
dataframe = read_attention_data(data)
bar0, bar1, bar2, bar3, bar01, bar012, x = read_data_fig3(dataframe)
ax2: Axes = plt.subplot(122, sharey=ax1, sharex=ax1)
plt.setp(ax2.get_yticklabels(), visible=False)
# ax2.set_xticks(list(range(12)))
# ax2.set_xticklabels(list(range(1,13)))
ax2.set_xlabel("Self-Attention Layer")
x = list(range(12))
ax2.set_title("XSum")
# ax2.set_ylim(0,1)
# ax2.set_xticklabels(list(range(1, 13)))
ax2 = plt.bar(x, bar0, color=colorblind[0], label=catnames[0])
ax2 = plt.bar(x, bar1, bottom=bar0, color=colorblind[1], label=catnames[1]
# ,hatch='-'
)
ax2 = plt.bar(x, bar2, bottom=bar01, color=colorblind[2], label=catnames[2]
# ,hatch='|'
)
ax2 = plt.bar(x, bar3, bottom=bar012, color=colorblind[3], label=catnames[3]
# hatch='/'
)
plt.legend(ncol=2, frameon=False)
return ax2
def draw_figure3():
"""
fig = plt.figure(figsize=(FIG_SIZE_x, ysize_figure3))
draw_fig3_barplots(dataframe)
fig.tight_layout()
plt.savefig(f"{data}_attn_layer.pdf", dpi=dpi)
plt.show()
plt.close()
"""
# fig = plt.figure(figsize=(FIG_SIZE_x / 0.48125, ysize_figure3))
fig = plt.figure(figsize=(FIG_SIZE_x, ysize_figure3))
colorblind = sns.color_palette("RdBu_r", 4)
catnames = ['Last Input', 'Current Input',
'Current Pred', 'Next Pred']
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=colorblind[0],
label=catnames[0]),
Patch(facecolor=colorblind[1],
label=catnames[1]),
Patch(facecolor=colorblind[2],
label=catnames[2]),
Patch(facecolor=colorblind[3],
label=catnames[3]),
]
# plt.legend(handles=legend_elements,loc='upper center')
ax2 = draw_fig3_stackbarplots()
# ax.legend(legend_elements, loc='lower center', ncol=4, labelspacing=0.)
# plt.legend(bbox_to_anchor=(0, 1.3),loc='upper center', borderaxespad=0.,ncol=4)
fig.tight_layout()
plt.savefig(f"stack_attn_layer.pdf", dpi=dpi)
plt.show()
plt.close()
if __name__ == '__main__':
cnndm_spec = "d_cnn_dailymail-m_googlepegasuscnn_dailymail-full10.95"
xsum_spec ="d_xsum-m_googlepegasusxsum-full10.95"
cnndm_spec = "d_cnn_dailymail-m_facebookbartlargecnn-full10.95"
xsum_spec = 'd_xsum-m_facebookbartlargexsum-full10.95'
draw_fig_1(cnndm_spec,xsum_spec)
draw_fig_2(cnndm_spec_name=cnndm_spec,
xsum_spec_name=xsum_spec)
# draw_figure3()