forked from zylo117/Yet-Another-EfficientDet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloading.py
47 lines (37 loc) · 1.43 KB
/
loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Author: Zylo117
"""
Simple Inference Script of EfficientDet-Pytorch
"""
import time
import torch
from torch import cuda
from torch.backends import cudnn
from torch.utils.data import Dataset, DataLoader
from matplotlib import colors
from backbone import EfficientDetBackbone
import cv2
import numpy as np
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess, STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box
def main():
anchor_ratios = [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]
anchor_scales = [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
for cp_coef in range(8):
print()
print('Model: d' + str(cp_coef), '>>>')
total_time = 0
for i in range(100):
if i % 10 == 0:
start = time.perf_counter()
model = EfficientDetBackbone(compound_coef=cp_coef, num_classes=90, ratios=anchor_ratios, scales=anchor_scales)
model.load_state_dict(torch.load(f'weights/efficientdet-d{cp_coef}.pth', map_location='cpu'))
model.requires_grad_(False)
model.eval()
model = model.cuda()
total_time += time.perf_counter() - start
else:
model = None
print('Loading(s): {:.2f}'.format(total_time / 10))
if __name__ == '__main__':
main()