-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDMF.py
266 lines (227 loc) · 11.9 KB
/
DMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import tensorflow as tf
import tensorflow.contrib.slim as slim
import scipy.sparse as sp
import numpy as np
import os
import time
import evalute_tf
from Recommendation import Recommendation, get_dataset_path
# config = tf.ConfigProto(allow_soft_placement=True,log_device_placement=True)
config = tf.ConfigProto(allow_soft_placement=True)
SUMMARY_DIR = os.getcwd() + "\\path\\log"
TEST_DIR = os.getcwd() + "\\path\\test"
ALLDATARESULT_DIR = os.getcwd() + "\\path\\alldata"
# 获取训练样例
# 输入为训练的评分矩阵,以及负样本率。负样本个数=正样本数*neg_ratio
def get_train_instances(train, neg_ratio):
user_input, item_input, labels = [], [], []
num_users = train.shape[0]
num_items = train.shape[1]
print(num_users)
print(num_items)
for (u, i) in train.keys():
# positive instance
user_input.append(u)
item_input.append(i)
labels.append(train[u, i])
# negative instances
for t in range(neg_ratio):
j = np.random.randint(num_items)
while (u, j) in train.keys():
j = np.random.randint(num_items)
user_input.append(u)
item_input.append(j)
labels.append(0)
print('数据总量:%d' % len(user_input))
print('加载数据完成!')
return user_input, item_input, labels
def get_Userweight_variable(name, shape, regularizer):
weights_user = tf.get_variable(name, shape,
initializer=tf.truncated_normal_initializer(mean=0, stddev=0.01))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights_user))
return weights_user
def get_Itemweight_variable(name, shape, regularizer):
weights_item = tf.get_variable(name, shape,
initializer=tf.truncated_normal_initializer(mean=0, stddev=0.01))
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights_item))
return weights_item
def variable_summaries(var, name):
# 将生成监控信息的操作放到同一个命名空间下
with tf.name_scope("summaries"):
tf.summary.histogram(name, var)
# 计算变量的平均值,并定义生成平均值信息日志的操作。记录变量平均值信息的日志标签名为'mean/'+name,其中mean为命名空间,/是
# 命名空间的分隔符。name则给出了当前监控指标属于哪一个变量
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
# 计算变量的标准差,并定义生成其日志的操作
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev/' + name, stddev)
# 定义神经网络模型
def get_inference(user_vector, item_vector, rc, regularizer, keep_prob):
layer_dimension = [32, 4] # 每层隐藏层的输出维度
# 定义深度神经网络前向传播过程
with tf.name_scope('layer1_user'):
with tf.name_scope('W1_user'):
W1_user = get_Userweight_variable('W1_user', [rc.num_items, layer_dimension[0]], regularizer)
# variable_summaries(W1_user, 'layer1_user/W1_user')
with tf.name_scope('user_vector1'):
layer1_user = tf.nn.relu(tf.matmul(user_vector, W1_user))
layer1_user = tf.nn.dropout(layer1_user, keep_prob)
with tf.name_scope('layer2_user'):
with tf.name_scope('W2_user'):
W2_user = get_Userweight_variable('W2_user', [layer_dimension[0], layer_dimension[1]], regularizer)
# variable_summaries(W2_user, 'layer2_user/W2_user')
with tf.name_scope('biases1_user'):
biases1_user = tf.Variable(tf.constant(0.0, shape=[layer_dimension[1]]))
# variable_summaries(biases1_user, 'layer2_user/biases1_user')
with tf.name_scope('user_vector2'):
layer2_user = tf.nn.relu(tf.matmul(layer1_user, W2_user) + biases1_user)
layer2_user = tf.nn.dropout(layer2_user, keep_prob)
with tf.name_scope('layer1_item'):
with tf.name_scope('W1_item'):
W1_item = get_Itemweight_variable('W1_item', [rc.num_users, layer_dimension[0]], regularizer)
# variable_summaries(W1_item, 'layer1_item/W1_item')
with tf.name_scope('item_vector1'):
layer1_item = tf.nn.relu(tf.matmul(item_vector, W1_item))
layer1_item = tf.nn.dropout(layer1_item, keep_prob)
with tf.name_scope('layer2_item'):
with tf.name_scope('W2_item'):
W2_item = get_Itemweight_variable('W2_item', [layer_dimension[0], layer_dimension[1]], regularizer)
# variable_summaries(W2_item, 'layer2_item/W2_item')
with tf.name_scope('biases1_item'):
biases1_item = tf.Variable(tf.constant(0.0, shape=[layer_dimension[1]]))
# variable_summaries(biases1_item, 'layer2_item/biases1_item')
with tf.name_scope('item_vector2'):
layer2_item = tf.nn.relu(tf.matmul(layer1_item, W2_item) + biases1_item)
layer2_item = tf.nn.dropout(layer2_item, keep_prob)
# layer2_user = tf.nn.relu(tf.matmul(layer1_user, W2_user))
# layer2_item = tf.nn.relu(tf.matmul(layer1_item, W2_item))
# 结果
y1 = tf.matmul(layer2_user, tf.transpose(layer2_item)) / (layer_dimension[-1] * layer_dimension[-1])
y2 = tf.diag_part(y1)
y = tf.clip_by_value(y2, 1.0e-6, 5.0)
return y
if __name__ == '__main__':
# 0: Hybird_,
# 1: ml_100_400_,
# 2: ml_100k_,
# 3: ml_1m_,
# 4: pcc_data,
# 5: ml_200_1000_,
# 6: test_99_400_
list_dataset = get_dataset_path(1)
recommemdation = Recommendation(list_dataset[0], list_dataset[1], list_dataset[2])
modelsavepath = os.getcwd() + '\\model\\' \
+ os.path.basename(list_dataset[0]) + '_model.ckpt'
num_users = recommemdation.num_users
num_items = recommemdation.num_items
batch_size = 256 # batch大小
# learning_rate = 0.0005 # 学习率
learning_rate = 0.0001 # 学习率
maxR = recommemdation.ratingMax # 最大评分
negative_radio = 0 # 一个正样本,negative_radio个负样本
# layer_dimension = [32, 4] # 每层隐藏层的输出维度,其实没什么用这里设置,get_inference
STEPS = 2000 # 设定训练轮次。
# 隐藏层层数N
N = 2
# 定义输入输出
embedding = a = np.asarray(recommemdation.trainMatrix.toarray())
keep_prob = tf.placeholder(tf.float32)
with tf.name_scope('input_vector_user'):
user_index = tf.placeholder(dtype='int32', shape=(None), name='user_index-input')
user_vector = tf.nn.embedding_lookup(embedding, user_index)
with tf.name_scope('input_vector_item'):
item_index = tf.placeholder(dtype='int32', shape=(None), name='item_index-input')
item_vector = tf.nn.embedding_lookup(np.transpose(embedding), item_index)
with tf.name_scope('y_labels'):
y_ = tf.placeholder(tf.float32, shape=(None), name='y-input')
regularizer = slim.l2_regularizer(0.0001)
y = get_inference(user_vector, item_vector, recommemdation, regularizer, keep_prob)
# 定义损失函数和反向传播算法 y_ 标准答案 y 预测答案
with tf.name_scope('cross_entropy'):
# ce
# cross_entropy = y_ * tf.log(y) + (1 - y_) * tf.log(1 - tf.where(tf.equal(y,1),1+1.0e-6,y))
loss = tf.reduce_sum(tf.square(y-y_)) + tf.add_n(tf.get_collection('losses'))
tf.summary.scalar('loss', loss)
with tf.name_scope('n_cross_entropy'):
# nce 论文提出的损失函数
loss1 = -tf.reduce_sum(y_ / maxR * tf.log(y) + (1 - y_ / maxR) * tf.log(1 - y)) + tf.add_n(
tf.get_collection('losses'))
tf.summary.scalar('n_cross_entropy', loss1)
with tf.name_scope('train_step'):
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.abs(y - y_))
tf.summary.scalar('accuracy', accuracy)
# 将所有日志写入文件
merged = tf.summary.merge_all()
print('加载训练集。。。。')
# 加载训练集,获取输入输出
user_input, item_input, labels = get_train_instances(recommemdation.trainMatrix, negative_radio)
# 加载测试集,获取输入输出
user_input_test, item_input_test, labels_test = evalute_tf.get_test_instances(recommemdation.testMatrix)
# 训练神经网络
dataset_size = len(user_input)
print('开始训练。。。。')
with tf.Session(config=config) as sess:
# 参数初始化。
init_op = tf.global_variables_initializer()
sess.run(init_op)
# 初始化写文件的writer,并将当前计算图写入日志
summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
summary_writer_test = tf.summary.FileWriter(TEST_DIR)
# 声明Saver类用于保存模型
saver = tf.train.Saver()
# sess.run(input_embedding, feed_dict={input_ids: [1, 2, 3, 0, 3, 2, 1]})
# 迭代更新参数
print('开始迭代')
acc_min = 5
for i in range(STEPS):
k = 0
end = 0
sum_ = 0
# 记录每batchsize的精度
accuracy_list, n_cross_entropy_list = [], []
# 将训练集数据跑一次
while end < dataset_size:
# 每次选取batch_size个样本进行训练
start = (k * batch_size) % dataset_size
end = min(start + batch_size, dataset_size)
sess.run(train_step, feed_dict={user_index: np.array(user_input)[start:end],
item_index: np.array(item_input)[start:end],
y_: np.array(labels)[start:end], keep_prob: 0.9})
accuracy_record, n_cross_entropy_score = sess.run([accuracy, loss], feed_dict={
user_index: np.array(user_input)[start:end],
item_index: np.array(item_input)[start:end],
y_: np.array(labels)[start:end], keep_prob: 1})
accuracy_list.append(accuracy_record)
n_cross_entropy_list.append(n_cross_entropy_score)
k += 1
# print('iter_num:%d', i)
# print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
# sess.run(train_step, feed_dict={user_index: np.array(user_input), item_index: np.array(item_input),
# y_: np.array(labels)})
# 每隔一段时间计算在所有数据上的交叉熵并输出。
if i % 5 == 0:
acc_all_data = np.mean(accuracy_list)
n_cross_entropy_all_data = np.mean(n_cross_entropy_list)
summary, _ = sess.run([merged, train_step], feed_dict={user_index: np.array(user_input)[start:end],
item_index: np.array(item_input)[start:end],
y_: np.array(labels)[start:end], keep_prob: 1})
summary_test, acc_test = sess.run([merged, accuracy],
feed_dict={user_index: user_input_test,
item_index: item_input_test,
y_: labels_test, keep_prob: 1})
print(
"After %d training step(s),(loss ,acc) on all data is (%g, %g) ,acc on test data is %g" % (
i, n_cross_entropy_all_data, acc_all_data, acc_test))
if acc_test < acc_min:
saver.save(sess, modelsavepath)
acc_min = acc_test
summary_writer.add_summary(summary, i)
summary_writer_test.add_summary(summary_test, i)
print('acc_test_min:',acc_min)
summary_writer.close()
summary_writer_test.close()