-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHybird.py
335 lines (307 loc) · 13.8 KB
/
Hybird.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# -*- coding: utf-8 -*-
import scipy.sparse as sp
import heapq
import numpy as np
import math
import time
import os
import re
from Recommendation import Recommendation, get_dataset_path
import multiprocessing
class SimilarityBaseRecommendation(Recommendation):
def __init__(self, file, train_file, test_file):
# 计算物品相似度用到的参数
self.sigma = 0.0000099
super(SimilarityBaseRecommendation, self).__init__(file, train_file, test_file)
print('训练的评分矩阵:')
print(self.trainMatrix.toarray())
# 生成每个物品的评分集合 {item:[1.0,2.0]}
self.itemRatingDict = self.Generate_ratingDict_ForEachItem(train_file)
print('物品的评分集合:')
print(self.itemRatingDict)
# 生成物品相似度矩阵,用索引方便获取
print('物品相似度矩阵:')
# self.itemSimialrityMatrix_Sitem = self.Generate_ItemSimilarity_Matrix()
# np.save(
# os.getcwd() + '\\out_file\\Hybird\\itemSimialrityMatrix_' + os.path.basename(train_file) + '_bingxing.npy',
# self.itemSimialrityMatrix_Sitem)
self.itemSimialrityMatrix_Sitem = np.load(
os.getcwd() + '\\out_file\\Hybird\\itemSimialrityMatrix_' + os.path.basename(train_file) + '_bingxing.npy')
print(self.itemSimialrityMatrix_Sitem)
# 生成用户相似度矩阵
print('用户相似度矩阵:')
# self.userSimilarityMatrix = self.Generate_UserSimilarity_Matrix()
# np.save(
# os.getcwd() + '\\out_file\\Hybird\\userSimialrityMatrix_' + os.path.basename(train_file) + '_bingxing.npy',
# self.userSimilarityMatrix)
self.userSimilarityMatrix = np.load(
os.getcwd() + '\\out_file\\Hybird\\userSimialrityMatrix_' + os.path.basename(train_file) + '_bingxing.npy')
print(self.userSimilarityMatrix)
# 生成评分矩阵
self.K = 4
while self.K <= 20:
self.predictMatrix = self.Generate_PredictRating_Matrix()
np.save(os.getcwd() + '\\out_file\\Hybird\\predictMatrix_' + str(self.K) + '_' + os.path.basename(
train_file) + '_bingxing.npy',
self.predictMatrix)
print('预测评分矩阵:')
print(self.predictMatrix)
self.K += 4
# The PSS model computes the user similarity value only based on the co-rated items
# function S1 based on PSS model
def S1(self, rui, rvj, i, j, rmed):
Proximity = 1 - 1 / (1 + math.exp(-math.fabs(rui - rvj)))
Significance = 1 / (1 + math.exp(-math.fabs(rui - rmed) * math.fabs(rvj - rmed)))
avei = self.Get_AveOfList(self.itemRatingDict[i])
avej = self.Get_AveOfList(self.itemRatingDict[j])
Singularity = 1 - 1 / (1 + math.exp(-math.fabs((rui + rvj) - (avei + avej)) / 2))
s1_result = Proximity * Significance * Singularity
return s1_result
# Sitem(i,j) is an item similarity measure
def Sitem(self, i, j):
# 只用计算一半
if j <= i:
Sitem = 1
else:
Sitem = 1 / (1 + self.Ds(i, j))
return Sitem
def Ds(self, i, j):
Ds = (self.D(i, j) + self.D(j, i)) / 2
return Ds
def D(self, i, j):
sum = 0
for v in range(1, int(float(self.ratingMax + 1))):
'''i物品中评分为v的概率'''
try:
pxi = self.itemRatingDict[i].count(v) / (len(self.itemRatingDict[i]))
pxj = self.itemRatingDict[j].count(v) / (len(self.itemRatingDict[j]))
piv = (self.sigma + pxi) / (1 + self.sigma * self.num_scale)
pjv = (self.sigma + pxj) / (1 + self.sigma * self.num_scale)
sum += piv * math.log2(piv / pjv)
except:
print('物品%d和%d有一个没有评分' % (i, j))
break
return sum
# S1*Sitem 中间过渡函数
def midfunciion(self, u, v):
if u in self.coItemDict.keys():
Iu = self.coItemDict[u]
else:
Iu = []
if v in self.coItemDict.keys():
Iv = self.coItemDict[v]
else:
Iv = []
sum = 0
if self.ratingMax > 1:
med = (1 + self.ratingMax) / 2
else:
med = 0.5
for i in Iu:
rui = self.trainMatrix[u, i]
for j in Iv:
rvj = self.trainMatrix[v, j]
# sum += self.Sitem(i, j) * self.S1(rui, rvj, i, j, med)
if i <= j:
sum += self.itemSimialrityMatrix_Sitem[i][j] * self.S1(rui, rvj, i, j, med)
else:
sum += self.itemSimialrityMatrix_Sitem[j][i] * self.S1(rui, rvj, i, j, med)
return sum
# S2 Function S2 can be seen as an asymmetric factor, which describes the asymmetry between user u and user v.
def S2(self, u, v):
if u in self.coItemDict.keys():
a_list = list(self.coItemDict[u])
else:
a_list = []
if v in self.coItemDict.keys():
b_list = list(self.coItemDict[v])
else:
b_list = []
ret_list = list((set(a_list).union(set(b_list))) ^ (set(a_list) ^ set(b_list)))
if len(a_list) ==0:
lenght=1
else:
lenght=len(a_list)
s2_result = 1 / (1 + math.exp(-(len(ret_list)) / lenght))
return s2_result
# S3 Function S3 focuses on the rating preference of each user
def S3(self, u, v):
ave_u = self.user_ave_rating_dict[u]
ave_v = self.user_ave_rating_dict[v]
sum_u = 0
sum_v = 0
for rating in self.trainMatrix[u].keys():
sum_u += math.pow((self.trainMatrix[u][rating] - ave_u), 2)
if len(self.trainMatrix[u]) == 0:
sd_u = 0
else:
sd_u = math.sqrt(sum_u / len(self.trainMatrix[u]))
for rating in self.trainMatrix[v].keys():
sum_v += math.pow((self.trainMatrix[v][rating] - ave_v), 2)
if len(self.trainMatrix[v]) == 0:
sd_v = 0
else:
sd_v = math.sqrt(sum_v / len(self.trainMatrix[v]))
s3_result = 1 - 1 / (1 + math.exp(-math.fabs(ave_u - ave_v) * math.fabs(sd_u - sd_v)))
return s3_result
# S(u,v)
def S(self, u, v):
print("(%d,%d)用户之间相似度计算" % (u, v))
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
if u == v:
s_result = 1
else:
s_result = self.S2(u, v) * self.S3(u, v) * self.midfunciion(u, v)
return s_result
def multi_Sitem(self, args):
return self.Sitem(*args)
def multi_S(self, args):
return self.S(*args)
def multi_Predict(self, args):
return self.Generate_Predicti_User_U_OnItem_I(*args)
# 生成一个物品相似度矩阵
def Generate_ItemSimilarity_Matrix(self):
itemSimialrityMatrix_Sitem = np.ones((self.num_items, self.num_items), dtype=np.float32)
for i in range(0, self.num_items):
# item_i = [i for x2 in range(0, self.num_items)]
# item_j = [x2 for x2 in range(0, self.num_items)]
# zip_args = list(zip(item_i, item_j))
# cores = multiprocessing.cpu_count()
# p = multiprocessing.Pool(processes=4)
# itemSimialrityMatrix_Sitem[i] = p.map(self.multi_Sitem, zip_args)
# p.close()
# p.join()
for j in range(i + 1, self.num_items):
itemSimialrityMatrix_Sitem[i][j] = self.Sitem(i, j)
return itemSimialrityMatrix_Sitem
# 生成用户相似度矩阵
def Generate_UserSimilarity_Matrix(self):
userSimilarityMatrix = np.zeros((self.num_users, self.num_users), dtype=np.float32)
for userId_i in range(0, self.num_users):
print("第%d个用户与其他用户的相似度开始" % (userId_i))
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
userId_i1 = [userId_i for x2 in range(0, self.num_users)]
userId_j = [x2 for x2 in range(0, self.num_users)]
zip_args = list(zip(userId_i1, userId_j))
cores = multiprocessing.cpu_count()
p = multiprocessing.Pool(processes=4) # 64 服务器上
userSimilarityMatrix[userId_i] = p.map(self.multi_S, zip_args)
p.close()
p.join()
print("第%d个用户与其他用户的相似度结束" % (userId_i))
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
# for userId_j in range(0, self.num_users):
# if userId_j != userId_i:
# print('computing user ' + str(userId_i) + ' and ' + str(userId_j))
# print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
#
# userSimilarityMatrix[userId_i][userId_j] = self.S(userId_i, userId_j)
# print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
# print('success compute ' + str(userId_i) + ' and ' + str(userId_j))
return userSimilarityMatrix
# 预测评分
def Generate_Predicti_User_U_OnItem_I(self, u, i):
print("(%d,%d)用户对物品评分预测" % (u, i))
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
if self.trainMatrix[u, i] == 0 or self.trainMatrix[u, i] == None:
ave_u = self.user_ave_rating_dict[u]
# user_u_vertor = list(self.userSimilarityMatrix[u])
# 前k相似用户result
# result = list(map(user_u_vertor.index, heapq.nlargest(self.K, user_u_vertor)))
result = list(np.argsort(self.userSimilarityMatrix[u])[-self.K:])
up_up = 0
down_down = 0
for v in result:
down_down += math.fabs(self.userSimilarityMatrix[u][v])
if v in self.coItemDict.keys():
v_list = self.coItemDict[v]
else:
v_list = []
if i in v_list:
ave_v = self.user_ave_rating_dict[v]
rvi = self.trainMatrix[v, i]
up_up += self.userSimilarityMatrix[u][v] * (rvi - ave_v)
return ave_u + up_up / down_down
else:
print('用户%d对物品%d已有评分' % (u, i))
# 返回-1 是为了方便后期计算命中率
return -1
# 生成预测评分矩阵
def Generate_PredictRating_Matrix(self):
predictMatrix = np.copy((self.trainMatrix.toarray()))
# for i in range(0, self.num_users):
# print("第%d个用户评分预测" % (i))
# print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
# for j in range(0, self.num_items):
# if predictMatrix[i][j] == 0 or predictMatrix[i][j] == None:
# predictMatrix[i][j] = self.Generate_Predicti_User_U_OnItem_I(i, j)
for i in range(0, self.num_users):
print("第%d个用户评分预测" % (i))
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
i1 = [i for x1 in range(0, self.num_items)]
j = [x2 for x2 in range(0, self.num_items)]
zip_args = list(zip(i1, j))
cores = multiprocessing.cpu_count()
p = multiprocessing.Pool(processes=4) # 64 服务器上
predictMatrix[i1] = p.map(self.multi_Predict, zip_args)
p.close()
p.join()
print("第第%d个用户评分预测结束" % (i))
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
return predictMatrix
# 求列表的中位数
def Get_MedOfList(self, data):
data.sort()
half = len(data) // 2
return (data[half] + data[~half]) / 2
# 求列表的平均数
def Get_AveOfList(self, data):
sum = 0
for i in range(len(data)):
sum += data[i]
return sum / len(data)
# 测试用
def testFunction(self):
print(self.trainMatrix.toarray())
# print(self.itemRatingDict)
# print(self.coItemDict)
# print(len(self.itemRatingDict[6]))
# print(self.trainMatrix[0, 0])
# print(self.coItemDict[1])
# print(self.Get_AveOfList(self.itemRatingDict[3]))
# print(self.Get_MedOfList(self.itemRatingDict[5]))
# print(self.Get_MedOfList([2,4,4,3,3,1]))
def show_all_paterner(self):
print('评价物品表coItemDict')
print(self.coItemDict)
print('评分矩阵trainMatrix')
print(self.trainMatrix)
print('用户相似度矩阵userSimilarityMatrix')
print(self.userSimilarityMatrix)
print('用户评分矩阵trainMatrix')
print(sp.dok_matrix(self.trainMatrix))
print('预测评分矩阵result')
print(self.Generate_PredictRating_Matrix())
def test_else(self):
print('相似度矩阵')
print(self.userSimilarityMatrix)
nums = list(self.userSimilarityMatrix[1])
print(nums)
result = list(map(nums.index, heapq.nlargest(2, nums)))
result.sort()
print(result)
if __name__ == '__main__':
# 0: Hybird_,
# 1: test_,
# 2: ml_100k_,
# 3: ml_1m_,
# 4: pcc_data,
# 5:ml_200_1000_
list_dataset = get_dataset_path(7)
# gogogogogogogogo______test
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))
# sbr = SimilarityBaseRecommendation(Hybird,Hybird,Hybird_test)
sbr = SimilarityBaseRecommendation(list_dataset[0], list_dataset[1], list_dataset[2])
# sbr = SimilarityBaseRecommendation(ml_100k, ml_100k_train, ml_100k_test)
# sbr = SimilarityBaseRecommendation(ml_1m,ml_1m_train,ml_1m_test)
print(time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(time.time())))