-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevalute_tf.py
134 lines (121 loc) · 5.35 KB
/
evalute_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import math
import time
import DMF as ntf
from Recommendation import Recommendation
import random
import tensorflow as tf
import tensorflow.contrib.slim as slim
import scipy.sparse as sp
import numpy as np
import os
import pandas as pd
def Evaluate_MAE(preditmatrix, testmatrix):
matrix_sub = sp.dok_matrix.copy(testmatrix)
num_users, num_items = preditmatrix.shape
userid1 = -1
m = 0
n = np.zeros(num_items)
for (userid, itemid) in testmatrix.keys():
matrix_sub[userid, itemid] = math.fabs(matrix_sub[userid, itemid] - preditmatrix[userid][itemid])
if userid != userid1:
m += 1
n[userid] += 1
userid1 = userid
sum = 0
sum_each_row = np.sum(matrix_sub.toarray(), axis=1)
for i in range(0, num_items):
if n[i] != 0:
sum += sum_each_row[i] / n[i]
MAE = sum / m
return MAE
# 获取测试样例,评测模型准确性
def get_test_instances(test):
user_input, item_input, labels = [], [], []
num_users = test.shape[0]
num_items = test.shape[1]
print(num_users)
print(num_items)
for (u, i) in test.keys():
user_input.append(u)
item_input.append(i)
labels.append(test[u, i])
print(len(user_input))
print('加载数据完成!')
return user_input, item_input, labels
if __name__ == '__main__':
list_dataset = ntf.get_dataset_path(1)
recommemdation = Recommendation(list_dataset[0], list_dataset[1], list_dataset[2])
modelsavepath = os.getcwd() + '\\model\\' + os.path.basename(list_dataset[0]) + '_model.ckpt'
num_users, num_items = recommemdation.num_users, recommemdation.num_items
# 定义输入输出
# 用的就是训练矩阵预测测试的值
embedding = a = np.asarray(recommemdation.trainMatrix.toarray())
keep_prob = tf.placeholder(tf.float32)
with tf.name_scope('input_vector_user'):
user_index = tf.placeholder(dtype='int32', shape=(None), name='user_index-input')
user_vector = tf.nn.embedding_lookup(embedding, user_index)
with tf.name_scope('input_vector_item'):
item_index = tf.placeholder(dtype='int32', shape=(None), name='item_index-input')
item_vector = tf.nn.embedding_lookup(np.transpose(embedding), item_index)
with tf.name_scope('y_labels'):
y_ = tf.placeholder(tf.float32, shape=(None), name='y-input')
regularizer = slim.l2_regularizer(0.0001)
y = ntf.get_inference(user_vector, item_vector, recommemdation, regularizer, keep_prob)
accuracy = tf.reduce_mean(tf.abs(y - y_))
user_input_test, item_input_test, labels_test = get_test_instances(recommemdation.testMatrix)
# MAE
# '''
with tf.Session() as sess:
# saver = tf.train.import_meta_graph(modelsavepath + '.meta')
saver = tf.train.Saver()
saver.restore(sess, modelsavepath)
# saver.restore(sess, tf.train.latest_checkpoint('./'))
start = 0
sum = 0
count_user = 0
while start < len(user_input_test):
userID = user_input_test[start]
print(userID)
num_userID = user_input_test.count(userID)
print('batch_size',num_userID)
end = start + num_userID
print(end)
y_predict = sess.run(y, feed_dict={user_index: user_input_test[start:end],
item_index: item_input_test[start:end],keep_prob:1})
print(y_predict)
print(labels_test[start:end])
accuracy_srocesOf_userI = sess.run(accuracy, feed_dict={user_index: user_input_test[start:end],
item_index: item_input_test[start:end],
y_: labels_test[start:end],keep_prob:1})
print('用户%s的均方误差%g' % (userID, accuracy_srocesOf_userI))
sum += accuracy_srocesOf_userI
print(sum)
count_user += 1
print(count_user)
start = end
MAE = sum / count_user
NMAE =MAE/4
Dmf_mae, Dmf_nmae = MAE,NMAE
Dmf_MAE = pd.DataFrame(columns=['Dmf_MAE_NMAE'], data=[[Dmf_mae],[Dmf_nmae]])
Dmf_MAE.to_csv(os.getcwd() + '\\result\\DMF\\Dmf_MAE' + os.path.basename(list_dataset[0]) + '.csv')
# '''
# HR 生成预测评分矩阵
# '''
with tf.Session() as sess:
# saver = tf.train.import_meta_graph(modelsavepath + '.meta')
saver = tf.train.Saver()
saver.restore(sess, modelsavepath)
predict_matrix = np.full((num_users, num_items), -1,dtype=np.float32)
print(predict_matrix)
train_matrix = recommemdation.trainMatrix
for userid in range(num_users):
for itemid in range(num_items):
print('当前计算(%d,%d)'%(userid,itemid))
if train_matrix[userid, itemid] == 0 or train_matrix[userid, itemid] == None:
predict_matrix[userid][itemid] = sess.run(y, feed_dict={user_index: np.array([userid]),
item_index: np.array([itemid]),
keep_prob: 1})
print(predict_matrix)
np.save(os.getcwd() + '\\out_file\\DMF\\predictMatrix_' + os.path.basename(list_dataset[1]) + '_DMF.npy',
predict_matrix)
# '''