-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevalute_tf_HR.py
70 lines (62 loc) · 2.67 KB
/
evalute_tf_HR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import scipy.sparse as sp
import numpy as np
import math
import time
import re
from Recommendation import Recommendation,get_dataset_path
import os
import random
def Evaluate_HR(preditmatrix, rec, top_k):
testmatrix = rec.testMatrix
num_users, num_items = testmatrix.shape
# 生成每个用户的推荐列表TOP-K { user_id:{item1,item2...},...}
each_user_topK_item = dict()
TOP_K = top_k # 5,10
for userid in range(0, num_users):
user_u_vertor = list(preditmatrix[userid])
if userid not in each_user_topK_item.keys():
# each_user_topK_item[userid] = list(map(user_u_vertor.index, heapq.nlargest(TOP_K, user_u_vertor)))
each_user_topK_item[userid] = np.argsort(user_u_vertor)[-TOP_K:]
# 判断testmatrix中的元素是否在each_user_topK_item中出现
num_testsample = sp.dok_matrix.count_nonzero(testmatrix)
# print(preditmatrix)
# print(each_user_topK_item)
count = 0
for (userid, itemid) in testmatrix.keys():
if testmatrix[userid, itemid] >= rec.user_ave_rating_dict[userid]:
if userid in each_user_topK_item.keys():
if itemid in each_user_topK_item[userid]:
count += 1
else:
num_testsample -= 1
HR = count / num_testsample
return HR
def Generate_HR_resultfile(path, path_train, path_test, dataname):
rec = Recommendation(path, path_train, path_test)
top_k = 5
result_file = os.getcwd() + '\\result\\' + dataname + '\\HR' + '_' + os.path.basename(
path) + '.csv'
with open(result_file, 'w') as result_f:
result_f.write('Deep Matrix Factorization Models for Recommender Systems \n')
filename = 'predictMatrix'
result_f.write('num_user:%d\nnum_items:%d\nranting:%d\nSparsity level:%.3f\n' % (
rec.num_users, rec.num_items, rec.num_rating, rec.num_rating / (rec.num_items * rec.num_users)))
result_f.write("%9.9s\t%6.6s\n" % ('item_topk', 'HR'))
while top_k <= 10:
preditmatrix_bingxing = np.load(
os.getcwd() + '\\out_file\\' + dataname + '\\' + filename + '_' + os.path.basename(
path_train) + '_DMF.npy')
hr_result = Evaluate_HR(preditmatrix_bingxing, rec, top_k)
line = "%9.9s\t%6.6s\n" % (top_k, str(hr_result))
result_f.write(line)
top_k += 5
if __name__ == '__main__':
# 0: Hybird_,
# 1: ml_100_400_,
# 2: ml_100k_,
# 3: ml_1m_,
# 4: pcc_data,
# 5:ml_200_1000_
list_dataset = get_dataset_path(1)
# HR
Generate_HR_resultfile(list_dataset[0], list_dataset[1], list_dataset[2], 'DMF')