-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy paththree_layer_network.py
101 lines (91 loc) · 3.46 KB
/
three_layer_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import math
from sklearn import datasets
def relu(X):
return np.maximum(X, 0)
def relu_derivative(X):
return 1. * (X > 0)
def build_model(X,hidden_nodes,output_dim=2):
model = {}
input_dim = X.shape[1]
model['W1'] = np.random.randn(input_dim, hidden_nodes) / np.sqrt(input_dim)
model['b1'] = np.zeros((1, hidden_nodes))
model['W2'] = np.random.randn(hidden_nodes, output_dim) / np.sqrt(hidden_nodes)
model['b2'] = np.zeros((1, output_dim))
return model
def feed_forward(model, x):
W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
# Forward propagation
z1 = x.dot(W1) + b1
#a1 = np.tanh(z1)
a1 = relu(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
out = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
return z1, a1, z2, out
def calculate_loss(model,X,y,reg_lambda):
num_examples = X.shape[0]
W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
# Forward propagation to calculate our predictions
z1, a1, z2, out = feed_forward(model, X)
probs = out / np.sum(out, axis=1, keepdims=True)
# Calculating the loss
corect_logprobs = -np.log(probs[range(num_examples), y])
loss = np.sum(corect_logprobs)
# Add regulatization term to loss (optional)
loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
return 1./num_examples * loss
def backprop(X,y,model,z1,a1,z2,output,reg_lambda):
delta3 = output
delta3[range(X.shape[0]), y] -= 1 #yhat - y
dW2 = (a1.T).dot(delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
#delta2 = delta3.dot(model['W2'].T) * (1 - np.power(a1, 2)) #if tanh
delta2 = delta3.dot(model['W2'].T) * relu_derivative(a1) #if ReLU
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
# Add regularization terms
dW2 += reg_lambda * model['W2']
dW1 += reg_lambda * model['W1']
return dW1, dW2, db1, db2
def train(model, X, y, num_passes=10000, reg_lambda = .1, learning_rate=0.1):
# Batch gradient descent
done = False
previous_loss = float('inf')
i = 0
losses = []
while done == False: #comment out while performance testing
#while i < 1500:
#feed forward
z1,a1,z2,output = feed_forward(model, X)
#backpropagation
dW1, dW2, db1, db2 = backprop(X,y,model,z1,a1,z2,output,reg_lambda)
#update weights and biases
model['W1'] -= learning_rate * dW1
model['b1'] -= learning_rate * db1
model['W2'] -= learning_rate * dW2
model['b2'] -= learning_rate * db2
if i % 1000 == 0:
loss = calculate_loss(model, X, y, reg_lambda)
losses.append(loss)
print "Loss after iteration %i: %f" %(i, loss) #uncomment once testing finished, return mod val to 1000
if (previous_loss-loss)/previous_loss < 0.01:
done = True
#print i
previous_loss = loss
i += 1
return model, losses
def main():
#toy dataset
X, y = datasets.make_moons(16, noise=0.10)
num_examples = len(X) # training set size
nn_input_dim = 2 # input layer dimensionality
nn_output_dim = 2 # output layer dimensionality
learning_rate = 0.01 # learning rate for gradient descent
reg_lambda = 0.01 # regularization strength
model = build_model(X,20,2)
model, losses = train(model,X, y, reg_lambda=reg_lambda, learning_rate=learning_rate)
output = feed_forward(model, X)
preds = np.argmax(output[3], axis=1)
if __name__ == "__main__":
main()