This repository has been archived by the owner on Jun 10, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsimple_optimal_stopping_diffusion.m
150 lines (126 loc) · 6.34 KB
/
simple_optimal_stopping_diffusion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
% Modification of Ben Moll's: http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m
% See notes and equation numbers in 'optimal_stopping.pdf'
% Solves the HJB variational inequality that comes from a general diffusion process with optimal stopping.
% min{rho v(x) - u(x) - mu(x)v'(x) - sigma(x)^2/2 v''(x), v(x) - S(x)} = 0
% with a reflecting boundary at a x_min and x_max
% unless S is very small, and u(x) is very large (i.e. no stopping), the reflecting boundary at x_min is unlikely to enter the solution
% for a large x_min, it is unlikely to affect the stopping point.
% Does so by using finite differences to discretize into the following complementarity problem:
% min{rho v - u - A v, v - S} = 0,
% where A is the discretized intensity matrix that comes from the finite difference scheme and the reflecting barrier at x_min and x_max
function [results] = simple_optimal_stopping_diffusion(p, settings)
%% Default settings
if ~isfield(settings, 'print_level')
settings.print_level = 0;
end
if ~isfield(settings, 'error_tolerance')
settings.error_tolerance = 1e-12;
end
if ~isfield(settings, 'pivot_tolerance')
settings.pivot_tolerance = 1e-8;
end
if ~isfield(settings, 'method')
settings.method = 'yuval'; %Default is the Yuval LCP downloaded from matlabcentral
end
if ~isfield(settings, 'basis_guess')
settings.basis_guess = zeros(settings.I,1); %Guess that it never binds?
end
%% Unpack parameters and settings
rho = p.rho; %Discount rate
u_x = p.u_x; %utility function
mu_x = p.mu_x; %Drift function
sigma_2_x = p.sigma_2_x; %diffusion term sigma(x)^2
S_x = p.S_x; %payoff function on exit.
x_min = p.x_min; %Not just a setting as a boundary value occurs here
x_max = p.x_max; %Not just a setting as a boundary value occurs here.
%Settings for the solution method
I = settings.I; %number of grid variables for x
%Create uniform grid and determine step sizes.
x = linspace(x_min, x_max, I)';
%% Discretize the operator
%This is for generic diffusion functions with mu_x = mu(x) and sigma_x = sigma(x)
mu = mu_x(x); %vector of constant drifts
sigma_2 = sigma_2_x(x); %
%Discretize the operator
Delta = x(2) - x(1);
A = discretize_univariate_diffusion(x, mu, sigma_2, false); %Note that this is not checking for absorbing states!
%% Setup and solve the problem as a linear-complementarity problem (LCP)
%Given the above construction for u, A, and S, we now have the discretized version
% min{rho v - u - A v, v - S} = 0,
%Convert this to the LCP form (see http://www.princeton.edu/~moll/HACTproject/option_simple.pdf)
% z >= 0
% Bz + q >= 0
% z'(Bz + q) = 0
% with the change of variables z = v - S
u = u_x(x);
S = S_x(x);
B = rho * speye(I) - A; %(6)
q = -u + B*S; %(8)
%% Solve the LCP version of the model
%Choose based on the method type.
if strcmp(settings.method, 'yuval')%Uses Yuval Tassa's Newton-based LCP solver, download from http://www.mathworks.com/matlabcentral/fileexchange/20952
%Box bounds, z_L <= z <= z_U. In this formulation this means 0 <= z_i < infinity
z_L = zeros(I,1); %(12)
z_U = inf(I,1);
settings.error_tolerance = settings.error_tolerance/1000; %Fundamentally different order of magnitude than the others.
[z, iter, converged] = LCP(B, q, z_L, z_U, settings);
error = z.*(B*z + q); %(11)
elseif strcmp(settings.method, 'lemke')
[z,err,iter] = lemke(B, q, settings.basis_guess,settings.error_tolerance, settings.pivot_tolerance);
error = z.*(B*z + q); %(11)
converged = (err == 0);
elseif strcmp(settings.method, 'knitro')
% Uses Knitro Tomlab as a MPEC solver
c = zeros(I, 1); %i.e. no objective function to minimize. Only looking for feasibility.
z_iv = zeros(I,1); %initial guess.
%Box bounds, z_L <= z <= z_U. In this formulation this means 0 <= z_i < infinity
z_L = zeros(I,1); %(12)
z_U = inf(I,1);
%B*z + q >= 0, b_L <= B*z <= b_U (i.e. -q_i <= (B*z)_i <= infinity)
b_L = -q;
b_U = inf(I,1);
%Each row in mpec is a complementarity pair. Require only 2 non-zeros in each row.
%In mpec, Columns 1:2 refer to variables, columns 3:4 to linear constraints, and 5:6 to nonlinear constraints:
% mpec = [ var1,var2 , lin1,lin2 , non1,non2 ; ... ];
%So a [2 0 3 0 0 0] row would say "x_2 _|_ c_3" for the 3rd linear constrant, and c_3 := A(3,:) x
num_complementarity_constraints = I;
mpec = sparse(num_complementarity_constraints, 6);
%The first row is the variable index, and the third is the row of the linear constraint matrix.
mpec(:, 1) = (1:I)'; %So says x_i _|_ c_i for all i.
mpec(:, 3) = (1:I)';
%Creates a LCP
Prob = lcpAssign(c, z_L, z_U, z_iv, B, b_L, b_U, mpec, 'LCP Problem');
%Add a few settings. Knitro is the only MPEC solver in TOMLAB
Prob.PriLevOpt = settings.print_level;
Prob.KNITRO.options.MAXIT = settings.max_iter;
if ~isfield(settings, 'knitro_ALG')
Prob.KNITRO.options.ALG = 3; %Knitro Algorithm. 0 is auto, 3 is SLQP
else
Prob.KNITRO.options.ALG = settings.knitro_ALG;
end
Prob.KNITRO.options.BLASOPTION = 0; %Can use blas/mkl... might be more useful for large problems.
Prob.KNITRO.options.FEASTOL = settings.error_tolerance; %Feasibility tolerance on linear constraints.
% Solve the LP (with MPEC pairs) using KNITRO:
Result = tomRun('knitro',Prob);
z = Result.x_k(1:I); %Strips out the slack variables automatically added by the MPEC
error = z.*(B*z + q); %(11)
converged = (Result.ExitFlag == 0);
iter = Result.Iter;
else
results = NaN;
assert(false, 'Unsupported method to solve the LCP');
end
%% Package Results
%% Convert from z back to v
v = z + S; %(7) calculate value function, unravelling the "z = v - S" change of variables
%Discretization results
results.x = x;
results.A = A;
results.S = S;
%Solution
results.v = v;
results.converged = converged;
results.iterations = iter;
results.LCP_error = max(abs(error));
results.LCP_L2_error = norm(error,2);
end