-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTsl2561Util.cpp
230 lines (193 loc) · 7.54 KB
/
Tsl2561Util.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*
Copyright: Joachim Banzhaf, 2018
This file is part of the Joba_Tsl2561 Library.
Joba_Tsl2561 is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Joba_Tsl2561 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Joba_Tsl2561. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Tsl2561Util.h"
namespace Tsl2561Util {
// Tsl2561Util::normalizedLuminosity returncode false can mean:
// - saturation: full and/or ir have value ~0 (aka -1) and not shortest exposure
// - manual exposure time: full and ir are corrected only for gain
// If true, full and ir have values as if exposure was 402 and gain 16
// or ~0 if saturated even at shortest exposure
bool normalizedLuminosity( bool gain, Tsl2561::exposure_t exposure, uint32_t &full, uint32_t &ir ) {
uint16_t scaledFull = (uint16_t)full;
uint16_t scaledIr = (uint16_t)ir;
if( scaledFull ) {
if( ! gain ) {
full <<= 4;
ir <<= 4;
}
switch( exposure ) {
case Tsl2561::EXP_14:
full = (scaledFull == 5047) ? 0xffffffff : ((full + 5) * 322) / 11;
ir = (scaledIr == 5047) ? 0xffffffff : ((ir + 5) * 322) / 11;
break;
case Tsl2561::EXP_101:
full = (scaledFull >= 37177/4*3) ? 0xffffffff : ((full + 40) * 322) / 81;
ir = (scaledIr >= 37177/4*3) ? 0xffffffff : ((ir + 40) * 322) / 81;
break;
case Tsl2561::EXP_402:
if( scaledFull >= 65535/4*3 ) full = 0xffffffff;
if( scaledIr >= 65535/4*3 ) ir = 0xffffffff;
break;
default:
return false;
}
return exposure == Tsl2561::EXP_14 || (full != 0xffffffff && ir != 0xffffffff);
}
return false;
}
// Return upper saturation limit upto which chip returns accurate data
uint16_t getLimit( Tsl2561::exposure_t exposure ) {
switch( exposure ) {
case Tsl2561::EXP_14: return 5047/4*3;
case Tsl2561::EXP_101: return 37177/4*3;
default: return 65535/4*3;
}
}
// Wait for one measurement interval plus some empirically tested extra millis
void waitNext( Tsl2561::exposure_t exposure ) {
switch( exposure ) {
case Tsl2561::EXP_14: delay(Tsl2561Util::DELAY_EXP_14); break;
case Tsl2561::EXP_101: delay(Tsl2561Util::DELAY_EXP_101); break;
default: delay(Tsl2561Util::DELAY_EXP_402); break;
}
}
// Wait for next sample, read luminosity and adjust sensitivity, if needed and possible
bool autoGain( Tsl2561 &tsl, bool &gain, Tsl2561::exposure_t &exposure, uint16_t &full, uint16_t &ir ) {
static const struct {
bool gain;
Tsl2561::exposure_t exposure;
} sensitivity[] = {
{ false, Tsl2561::EXP_14, }, // min
{ false, Tsl2561::EXP_101 },
{ true, Tsl2561::EXP_14 },
{ false, Tsl2561::EXP_402 },
{ true, Tsl2561::EXP_101 },
{ true, Tsl2561::EXP_402 } // max
};
// Serial.printf("autoGain start: gain=%u, expo=%u\n", gain, exposure);
// get current sensitivity
if( !tsl.getSensitivity(gain, exposure) ) {
return false; // I2C error
}
// find index of current sensitivity
uint8_t curr = 0;
while( curr < sizeof(sensitivity)/sizeof(sensitivity[0]) ) {
if( sensitivity[curr].gain == gain && sensitivity[curr].exposure == exposure ) {
break;
}
curr++;
}
if( curr == sizeof(sensitivity)/sizeof(sensitivity[0]) ) {
return false; // should not happen...
}
// sometimes sensor reports high brightness although it is darker.
uint8_t retryOnSaturated = 10;
// in a loop wait for next sample, get values and adjust sensitivity if needed
while( true ) {
waitNext(exposure);
if( !tsl.fullLuminosity(full) || !tsl.irLuminosity(ir) ) {
return false; // I2C error
}
uint16_t limit = getLimit(exposure);
if( full >= 1000 && full <= limit ) {
// Serial.printf("autoGain normal full=%u, limits=1000-%u, curr=%u\n", full, limit, curr);
return true; // new value within limits of good accuracy
}
// adjust sensitivity, if possible
if( (full < 1000 && ++curr < sizeof(sensitivity)/sizeof(sensitivity[0]))
|| (full > limit && curr-- > 0) ) {
// Serial.printf("autoGain adjust full=%u, limits=1000-%u, curr=%u\n", full, limit, curr);
if( !tsl.setSensitivity(sensitivity[curr].gain, sensitivity[curr].exposure) ) {
return false; // I2C error
}
gain = sensitivity[curr].gain;
exposure = sensitivity[curr].exposure;
}
else {
// sensitivity already is at minimum or maximum
if( ++curr > 0 || retryOnSaturated-- == 0 ) {
// Serial.printf("autoGain limit full=%u, ir=%u, limits=1000-%u, curr=%u, retry=%u\n", full, ir, limit, curr, retryOnSaturated);
// dark, or repeatedly confirmed high brightness
return true; // saturated, but best we can do
}
}
}
}
// Measurement is up to 20% too high for temperatures above 25°C. Compensate for that.
bool compensateTemperature( int16_t centiCelsius, uint32_t &full, uint32_t &ir ) {
// assume linear gradient 0% at 25°C to +20% at 70°C
if( centiCelsius >= -3000 && centiCelsius <= 7000 ) {
full -= (full * (centiCelsius - 2500)) / (5 * (7000 - 2500));
ir -= (ir * (centiCelsius - 2500)) / (5 * (7000 - 2500));
return true;
}
return false;
}
// Round num after valid digits
uint32_t significance( uint32_t num, uint8_t digits ) {
uint8_t len = 1;
uint32_t n = num;
while( n /= 10 ) {
len++;
}
uint32_t e10 = 1;
while( len-- > digits ) {
e10 *= 10;
}
return ((num + e10 / 2) / e10) * e10;
}
// Calculate lux from raw luminosity values
bool milliLux( uint32_t full, uint32_t ir, uint32_t &mLux, bool csType, uint8_t digits ) {
if( !full ) {
mLux = 0;
return true;
}
if( full == 0xffffffff || ir == 0xffffffff ) {
mLux = 99999999; // indicates saturation at shortest exposure
return true;
}
uint32_t milliRatio = ir * 1000 / full;
if( csType ) {
if( milliRatio < 130 ) { mLux = 1000 * full - 840 * ir; }
else if ( milliRatio < 260 ) { mLux = 1080 * full - 1380 * ir; }
else if ( milliRatio < 390 ) { mLux = 1160 * full - 1690 * ir; }
else if ( milliRatio < 520 ) { mLux = 1260 * full - 1940 * ir; }
else if ( milliRatio < 650 ) { mLux = 730 * full - 930 * ir; }
else if ( milliRatio < 800 ) { mLux = 500 * full - 575 * ir; }
else if ( milliRatio < 1300 ) { mLux = 110 * full - 85 * ir; }
else {
mLux = 0;
return false;
}
mLux /= 400 * 16 / 200; // 32 = counts/lux (cpl)
}
else {
if( milliRatio < 125 ) { mLux = 1000 * full - 895 * ir; }
else if ( milliRatio < 250 ) { mLux = 1070 * full - 1045 * ir; }
else if ( milliRatio < 375 ) { mLux = 1150 * full - 1790 * ir; }
else if ( milliRatio < 500 ) { mLux = 1260 * full - 2050 * ir; }
else if ( milliRatio < 610 ) { mLux = 740 * full - 1020 * ir; }
else if ( milliRatio < 800 ) { mLux = 420 * full - 500 * ir; }
else if ( milliRatio < 1300 ) { mLux = 48 * full - 37 * ir; }
else {
mLux = 0;
return false;
}
mLux /= 400 * 16 / 193; // 33 = counts/lux (cpl)
}
mLux = significance(mLux, digits); // only the first 4 digits seem to make sense.
return true;
}
} // namespace Tsl2561Util