-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtask_launcher_depthnet.py
130 lines (125 loc) · 5.01 KB
/
task_launcher_depthnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import torch
from torch.autograd import (Variable,
grad)
from christorch import util
from importlib import import_module
import argparse
import glob
import os
from depthnet_gan import (DepthNetGAN,
zip_iter,
save_handler)
from depthnet_gan_learnm import DepthNetGAN_M
from interactive import (measure_depth,
measure_kp_error)
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
'''
Process arguments.
'''
def parse_args():
parser = argparse.ArgumentParser(description="")
parser.add_argument('--name', type=str, default="deleteme")
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--lamb', type=float, default=1.)
parser.add_argument('--dnorm', type=float, default=0.)
parser.add_argument('--l2_decay', type=float, default=0.)
# Iterator returns (it_train_a, it_train_b, it_val_a, it_val_b)
parser.add_argument('--iterator', type=str, default=None)
parser.add_argument('--resume', type=str, default=None)
spec = parser.add_mutually_exclusive_group()
spec.add_argument('--interactive', action='store_true')
spec.add_argument('--compute_stats', action='store_true')
spec.add_argument('--dump_depths', type=str)
parser.add_argument('--use_l1', action='store_true')
parser.add_argument('--no_gan', action='store_true')
parser.add_argument('--detach', action='store_true',
help='Do not backprop through m (secondary ' +
'least squares depth estimation')
parser.add_argument('--learn_m', action='store_true')
parser.add_argument('--update_g_every', type=int, default=1)
parser.add_argument('--network', type=str, default=None)
parser.add_argument('--save_path', type=str, default='./results')
parser.add_argument('--save_images_every', type=int, default=100)
parser.add_argument('--save_every', type=int, default=10)
parser.add_argument('--cpu', action='store_true')
args = parser.parse_args()
return args
args = parse_args()
# Dynamically load network module.
net_module = import_module(args.network.replace("/", ".").\
replace(".py", ""))
gen_fn, disc_fn = getattr(net_module, 'get_network')()
# Dynamically load iterator module.
itr_module = import_module(args.iterator.replace("/", ".").\
replace(".py", ""))
itr_train, itr_val = getattr(itr_module, 'get_iterators')(args.batch_size)
itr_train_zipped = zip_iter(itr_train, itr_train)
itr_val_zipped = zip_iter(itr_val, itr_val)
if args.no_gan and args.lamb != 1.:
raise Exception("lambda must be 1.0 if GAN training is disabled")
if args.learn_m:
gan_class = DepthNetGAN_M
else:
gan_class = DepthNetGAN
gan_kwargs = {
'g_fn': gen_fn,
'd_fn': disc_fn,
'opt_d_args': {'lr':args.lr, 'betas':(args.beta1, args.beta2)},
'opt_g_args': {'lr':args.lr, 'betas':(args.beta1, args.beta2)},
'lamb': args.lamb,
'detach': args.detach,
'dnorm': args.dnorm,
'l2_decay': args.l2_decay,
'use_l1': args.use_l1,
'no_gan': args.no_gan,
'handlers': [save_handler("%s/%s" % (args.save_path, args.name))],
'update_g_every': args.update_g_every,
'use_cuda': False if args.cpu else 'detect'
}
net = gan_class(**gan_kwargs)
if args.resume is not None:
if args.resume == 'auto':
# autoresume
model_dir = "%s/%s/models" % (args.save_path, args.name)
# List all the pkl files.
files = glob.glob("%s/*.pkl" % model_dir)
# Make them absolute paths.
files = [ os.path.abspath(key) for key in files ]
if len(files) > 0:
# Get creation time and use that.
latest_model = max(files, key=os.path.getctime)
print("Auto-resume mode found latest model: %s" %
latest_model)
net.load(latest_model)
else:
print("Loading model: %s" % args.resume)
net.load(args.resume)
if args.interactive:
import pdb; pdb.set_trace()
elif args.compute_stats:
print("Computing stats on validation set...")
measure_depth(net, grid=False, mode='valid')
measure_kp_error(net, grid=False, mode='valid')
print("Computing stats on test set...")
measure_depth(net, grid=True, mode='test')
measure_kp_error(net, grid=False, mode='test')
elif args.dump_depths is not None:
print("Dumping depths to file: %s" % args.dump_depths)
measure_depth(net, grid=False, mode='test',
dump_file=args.dump_depths)
else:
net.train(
itr_train=itr_train_zipped,
itr_valid=itr_val_zipped,
epochs=args.epochs,
model_dir="%s/%s/models" % (args.save_path, args.name),
result_dir="%s/%s" % (args.save_path, args.name),
save_every=args.save_every
)