-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprediction_metrics.py
131 lines (106 loc) · 3.51 KB
/
prediction_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#%%
import sys,os
# General Stuff
import numpy as np
import pandas as pd
from scipy import stats
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import (
Input,
Dense,
Dropout,
Conv1D,
Flatten,
Lambda,
Permute,
Multiply,
)
import tensorflow.keras.backend as K
import tensorflow as tf
from activations import Mish
from optimizers import Ranger
import losses as l
import callbacks as cb
from layers import Attention, LayerNormalization
from data import dataset
from generator import generator
# Plot Stuff
import matplotlib
# matplotlib.use('tkagg')
import matplotlib.pyplot as plt
plt.style.use('bmh')
import seaborn as sns
## sk-learn
from sklearn.metrics import balanced_accuracy_score, confusion_matrix, average_precision_score, accuracy_score
from sklearn.metrics import roc_auc_score, classification_report, matthews_corrcoef, precision_recall_fscore_support
#%%
# strategy = tf.distribute.MirroredStrategy()
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
#%%
## BUILD non IMU DATA AND MODEL PARAMS
data = dataset("data/ninaPro")
reps = np.unique(data.repetition)
val_reps = reps[3::2]
train_reps = reps[np.where(np.isin(reps, val_reps, invert=True))]
test_reps = val_reps[-1].copy()
val_reps = val_reps[:-1]
train = generator(data, list(train_reps))
validation = generator(data, list(val_reps), augment=False)
test = generator(data, [test_reps][0], augment=False)
# n_time = train[0][0].shape[1]
# n_class = 53
# n_features = train[0][0].shape[-1]
# model_pars = {
# "n_time": n_time,
# "n_class": n_class,
# "n_features": n_features,
# "dense": [500, 500, 2000],
# "drop": [0.36, 0.36, 0.36],
# }
loss = l.focal_loss(gamma=3., alpha=6.)
def build_model_pars(n_time, n_class, n_features):
return {
"n_time": n_time,
"n_class": n_class,
"n_features": n_features,
"dense": [500, 500, 2000],
"drop": [0.36, 0.36, 0.36],
}
def build(model_fn, params):
cosine = cb.CosineAnnealingScheduler(
T_max=50, eta_max=1e-3, eta_min=1e-5, verbose=1, epoch_start=5
)
# with strategy.scope():
model = model_fn(**params)
print(model.summary())
return model, cosine
def attention_simple(inputs, n_time):
input_dim = int(inputs.shape[-1])
a = Permute((2, 1), name='temporalize')(inputs)
a = Dense(n_time, activation='softmax', name='attention_probs')(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = Multiply(name='focused_attention')([inputs, a_probs])
output_flat = Lambda(lambda x: K.sum(x, axis=1), name='temporal_average')(output_attention_mul)
return output_flat, a_probs
def base_model(n_time, n_class, n_features, dense=[50, 50, 50], drop=[0.2, 0.2, 0.2]):
inputs = Input((n_time, n_features))
x = inputs
x = Conv1D(filters=128, kernel_size=3, padding="same", activation=Mish())(x)
x = LayerNormalization()(x)
x, a = attention_simple(x, n_time)
for d, dr in zip(dense, drop):
x = Dropout(dr)(x)
x = Dense(d, activation=Mish())(x)
x = LayerNormalization()(x)
outputs = Dense(n_class, activation="softmax")(x)
model = Model(inputs, outputs)
return model
def set_weights(model, h5_path):
# model, cosine = build(base_model)
model.load_weights(h5_path)
model.compile(Ranger(learning_rate=1e-3), loss=loss, metrics=["accuracy"])
return model
#%%
i = sys.argv[-1]
model, cosine = build(base_model)