forked from IBM/data-prep-kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform.py
186 lines (160 loc) · 6.94 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# (C) Copyright IBM Corp. 2024.
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
from argparse import ArgumentParser, Namespace
from typing import Any
import nltk
import pandas as pd
import pyarrow as pa
import torch
from data_processing.transform import AbstractTableTransform, TransformConfiguration
from data_processing.utils import GB, TransformUtils, get_logger
from transformers import AutoModelForSequenceClassification, AutoTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
nltk.download("punkt_tab")
class HAPTransform(AbstractTableTransform):
"""
Implements HAP transform
"""
def __init__(self, config: dict[str, Any]):
super().__init__(config)
self.model_name_or_path = config.get("model_name_or_path", "ibm-granite/granite-guardian-hap-38m")
self.annotation_column = config.get("annotation_column", "hap_score")
self.doc_text_column = config.get("doc_text_column", "contents")
self.max_length = config.get("max_length", 512)
self.batch_size = config.get("batch_size", 128)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name_or_path)
def _apply_model(self, data: list, batch_size: int) -> list[float]:
num_batches = len(data) // batch_size
data_sent_scores = []
for i in range(num_batches + 1):
print(f"Processing batch: {i}/{num_batches}")
start_idx = i * batch_size
end_idx = min((i + 1) * batch_size, len(data))
if start_idx >= end_idx:
continue
inputs = self.tokenizer(
data[start_idx:end_idx], max_length=self.max_length, padding=True, truncation=True, return_tensors="pt"
).to(device)
with torch.no_grad():
logits = self.model(**inputs).logits
data_sent_scores.extend(torch.softmax(logits, dim=1).cpu().numpy()[:, 1].tolist())
return data_sent_scores
def _apply_sent_split(self, data: list) -> tuple[list[str], list[int]]:
data_sents, data_sent_ids = [], []
for i, e in enumerate(data):
s_list = nltk.sent_tokenize(e)
data_sents.extend(s_list)
data_sent_ids.extend([i] * len(s_list))
return data_sents, data_sent_ids
def _apply_aggregate(self, nb_doc: int, sent_scores: list[float], sent_ids: list[int]) -> list[float]:
doc_scores = []
for i in range(nb_doc):
temp = [score for idx, score in zip(sent_ids, sent_scores) if i == idx]
doc_scores.append(max(temp))
return doc_scores
def transform(self, table: pa.Table, file_name: str = None) -> tuple[list[pa.Table], dict[str, Any]]:
"""
Process a table of document text to generate a hap score for each document
:param table: Pyarrow table
:return: a table with an additional hap_score column
"""
# make sure that the table contains "contents" column
TransformUtils.validate_columns(table=table, required=[self.doc_text_column])
self.df = table.to_pandas()
df_doc_list = []
for i in range(len(self.df)):
text = self.df.iloc[i][self.doc_text_column]
text = " ".join(text.strip().splitlines())
df_doc_list.append(text)
data_sents, data_sent_ids = self._apply_sent_split(df_doc_list)
data_sent_scores = self._apply_model(data_sents, self.batch_size)
df_doc_scores = self._apply_aggregate(len(df_doc_list), data_sent_scores, data_sent_ids)
assert len(df_doc_list) == len(df_doc_scores)
self.df["hap_score"] = df_doc_scores
print(self.df)
out_table = pa.Table.from_pandas(self.df)
metadata = {}
return [out_table], metadata
logger = get_logger(__name__)
class HAPTransformConfiguration(TransformConfiguration):
"""
Provides support for configuring and using the associated Transform class include
configuration with CLI args and combining of metadata.
"""
def __init__(self):
super().__init__(name="hap", transform_class=HAPTransform)
self.params = {}
self.daf = None
def add_input_params(self, parser: ArgumentParser) -> None:
"""
Add Transform-specific arguments to the given parser.
This will be included in a dictionary used to initialize the HAPTransform.
By convention a common prefix should be used for all transform-specific CLI args
(e.g, noop_, pii_, etc.)
"""
parser.add_argument(
"--model_name_or_path",
type=str,
required=False,
default="ibm-granite/granite-guardian-hap-38m",
help="HAP model path",
)
parser.add_argument(
"--annotation_column",
type=str,
required=False,
default="hap_score",
help="hap score for each document",
)
parser.add_argument(
"--doc_text_column",
type=str,
required=False,
default="contents",
help="The column name that contains the document text",
)
parser.add_argument(
"--inference_engine",
type=str,
required=False,
default="CPU",
help="inference engine used",
)
parser.add_argument(
"--max_length",
type=int,
required=False,
default=512,
help="inference engine used",
)
parser.add_argument(
"--batch_size",
type=int,
required=False,
default=128,
help="batch size",
)
def apply_input_params(self, args: Namespace) -> bool:
"""
Validate and apply the arguments that have been parsed
:param args: user defined arguments.
:return: True, if validate pass or False otherwise
"""
self.params["model_name_or_path"] = args.model_name_or_path
self.params["annotation_column"] = args.annotation_column
self.params["doc_text_column"] = args.doc_text_column
self.params["inference_engine"] = args.inference_engine
self.params["max_length"] = args.max_length
self.params["batch_size"] = args.batch_size
logger.info(f"hap params are {self.params} ")
return True