Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to reproduce test dataset result (mAP 72.0, NDS 74.1) #115

Open
baek0307 opened this issue Sep 1, 2024 · 2 comments
Open

How to reproduce test dataset result (mAP 72.0, NDS 74.1) #115

baek0307 opened this issue Sep 1, 2024 · 2 comments

Comments

@baek0307
Copy link

baek0307 commented Sep 1, 2024

Hello, your research is very interesting.

When I used the checkpoint file you provided
The mAP(70.3), NDS(72.9) score published in the paper (voxel0075_vov_1600x640_epoch20.pth) can be reproduced identically.

However, when I applied to the test dataset with the same checkpoint and submitted it through eval.ai , the mAP (72.0) and NDS (74.1) as presented in the paper do not come out.
(I only got a 70.4/73.0 result.)

According to the paper, it is reported that the results for the test dataset did not use any test time augmentation.

Is there anything I'm missing?

I would appreciate it if you could share how I can use that checkpoint to get the results presented in test dataset as well.

I attached the inference result for test dataset through evalai.

{"metrics_summary": {"label_aps": {"car": {"0.5": 0.7828338643390523, "1.0": 0.8831038224684278, "2.0": 0.9114359996267178, "4.0": 0.9254586561703609}, "truck": {"0.5": 0.41919666800000593, "1.0": 0.622328594464253, "2.0": 0.7160340347397985, "4.0": 0.7378183413995415}, "bus": {"0.5": 0.548469137094366, "1.0": 0.7569229775169954, "2.0": 0.8098595958088101, "4.0": 0.8297213856562474}, "trailer": {"0.5": 0.2730730775488542, "1.0": 0.5935867083776286, "2.0": 0.7732024999405478, "4.0": 0.8328551843153792}, "construction_vehicle": {"0.5": 0.0545915716199332, "1.0": 0.27532892336184356, "2.0": 0.5082597602579472, "4.0": 0.575186651902535}, "pedestrian": {"0.5": 0.8211789322916796, "1.0": 0.8687718930225161, "2.0": 0.8936666985570685, "4.0": 0.9101382415704569}, "motorcycle": {"0.5": 0.6638490136121394, "1.0": 0.7739358495531468, "2.0": 0.8069320185480913, "4.0": 0.8167383949692603}, "bicycle": {"0.5": 0.5159002819221052, "1.0": 0.5857842293615451, "2.0": 0.6163695184606621, "4.0": 0.6328676850785252}, "traffic_cone": {"0.5": 0.7894746430860434, "1.0": 0.8306125183732287, "2.0": 0.8529509465365473, "4.0": 0.8744205955196961}, "barrier": {"0.5": 0.6422856220023887, "1.0": 0.7754488884437414, "2.0": 0.8162615136112452, "4.0": 0.8331002377986595}}, "mean_dist_aps": {"car": 0.8757080856511398, "truck": 0.6238444096508997, "bus": 0.7362432740191047, "trailer": 0.6181793675456024, "construction_vehicle": 0.35334172678556475, "pedestrian": 0.8734389413604302, "motorcycle": 0.7653638191706594, "bicycle": 0.5877304287057094, "traffic_cone": 0.8368646758788788, "barrier": 0.7667740654640086}, "mean_ap": 0.7037488794231997, "label_tp_errors": {"car": {"trans_err": 0.1743480709793415, "scale_err": 0.13566460581490586, "orient_err": 0.04725901192730328, "vel_err": 0.22679931127815556, "attr_err": 0.12431389628784703}, "truck": {"trans_err": 0.3427289728502886, "scale_err": 0.17527353027035772, "orient_err": 0.04350761314384568, "vel_err": 0.29796317726759314, "attr_err": 0.12388885083462146}, "bus": {"trans_err": 0.28201606037639, "scale_err": 0.16712478110600337, "orient_err": 0.0363636049951514, "vel_err": 0.4374811013847662, "attr_err": 0.2975466820118584}, "trailer": {"trans_err": 0.4594987549418118, "scale_err": 0.1598362470200802, "orient_err": 0.7090668615659704, "vel_err": 0.21990061845424608, "attr_err": 0.1213828314115689}, "construction_vehicle": {"trans_err": 0.6531381380178928, "scale_err": 0.37860272173948156, "orient_err": 0.9052422059689905, "vel_err": 0.09225026693939813, "attr_err": 0.05580084216309439}, "pedestrian": {"trans_err": 0.14896347137302224, "scale_err": 0.29168604291809497, "orient_err": 0.2837789415908823, "vel_err": 0.1934540022925848, "attr_err": 0.10823283310883593}, "motorcycle": {"trans_err": 0.20741331105274743, "scale_err": 0.2121743254327902, "orient_err": 0.1789094241410364, "vel_err": 0.5424214603537325, "attr_err": 0.07602250764905477}, "bicycle": {"trans_err": 0.2341929718113284, "scale_err": 0.26988925423439813, "orient_err": 0.41378644507819073, "vel_err": 0.24995264273669682, "attr_err": 0.03577556771890466}, "traffic_cone": {"trans_err": 0.1411094561318333, "scale_err": 0.33489553379841935, "orient_err": NaN, "vel_err": NaN, "attr_err": NaN}, "barrier": {"trans_err": 0.23116747767388468, "scale_err": 0.273886442685595, "orient_err": 0.03039179741959808, "vel_err": NaN, "attr_err": NaN}}, "tp_errors": {"trans_err": 0.2874576685208541, "scale_err": 0.23990334850201264, "orient_err": 0.2942562117589965, "vel_err": 0.2825278225883967, "attr_err": 0.11787050139822319}, "tp_scores": {"trans_err": 0.7125423314791459, "scale_err": 0.7600966514979873, "orient_err": 0.7057437882410035, "vel_err": 0.7174721774116033, "attr_err": 0.8821294986017768}, "nd_score": 0.7296728844347515, "eval_time": 308.0731339454651}, "result": {"mAP": 0.7037488794231997, "mATE": 0.2874576685208541, "mASE": 0.23990334850201264, "mAOE": 0.2942562117589965, "mAVE": 0.2825278225883967, "mAAE": 0.11787050139822319, "NDS": 0.7296728844347515}}

Evaluation on validation dataset
image

Evaluation on test dataset from evalai
image

@junjie18
Copy link
Owner

junjie18 commented Sep 2, 2024

image

Re-train the model with train + val dataset

@baek0307
Copy link
Author

baek0307 commented Sep 2, 2024

Thank you very much!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants