-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model_with_agg_data_for_transfer_task.py
311 lines (252 loc) · 14.8 KB
/
train_model_with_agg_data_for_transfer_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import argparse
import pickle
import numpy as np
from osgeo import gdal
from utils import read_input_raster_data, compute_performance_metrics, write_geolocated_image, create_map_of_valid_ids, \
compute_grouped_values, transform_dict_to_array, transform_dict_to_matrix
from cy_utils import compute_map_with_new_labels, compute_accumulated_values_by_region, compute_disagg_weights, \
set_value_for_each_region
import config_pop as cfg
from building_disagg_baseline import disaggregate_weighted_by_preds
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from distutils.util import strtobool
from utils import compute_grouped_values
from superpixel_disagg_model import unroll_arglist
from train_model_with_agg_data import compute_density, compute_avg_feats, get_all_pixel_features, perform_prediction_at_pixel_level, \
compute_performance_metrics_from_dict, select_subset_dict, get_finest_level_indexes, perform_rf_parameter_search
def get_dataset(dataset_name, preproc_data_dir, built_up_area_agg, population_target):
rst_wp_regions_path = cfg.metadata[dataset_name]["rst_wp_regions_path"]
preproc_data_path = os.path.join(preproc_data_dir, cfg.metadata[dataset_name]["preproc_data_path"])
# Read input data
input_paths = cfg.input_paths[dataset_name]
with open(preproc_data_path, 'rb') as handle:
pdata = pickle.load(handle)
cr_census_arr = pdata["cr_census_arr"]
valid_ids = pdata["valid_ids"]
no_valid_ids = pdata["no_valid_ids"]
id_to_cr_id = pdata["id_to_cr_id"]
valid_census = pdata["valid_census"]
num_coarse_regions = pdata["num_coarse_regions"]
geo_metadata = pdata["geo_metadata"]
areas = pdata["areas"]
if built_up_area_agg:
areas = pdata["built_up_areas"]
wp_rst_regions = gdal.Open(rst_wp_regions_path).ReadAsArray().astype(np.uint32)
wp_ids = list(np.unique(wp_rst_regions))
num_wp_ids = len(wp_ids)
inputs = read_input_raster_data(input_paths)
input_buildings = inputs["buildings"]
# Binary map representing a pixel belong to a region with valid id
map_valid_ids = create_map_of_valid_ids(wp_rst_regions, no_valid_ids)
# Get map of coarse level regions
cr_regions = compute_map_with_new_labels(wp_rst_regions, id_to_cr_id, map_valid_ids)
# Compute area of coarse regions
cr_areas = compute_grouped_values(areas, valid_ids, id_to_cr_id)
# Compute average features at the coarse level
feats_list = list(inputs.keys())
if not population_target:
feats_list = [feat for feat in feats_list if feat != "buildings"]
features = pdata["features"]
if built_up_area_agg:
features = pdata["features_from_built_up_areas"]
building_counts = {}
target_norm = areas
cr_target_norm = cr_areas
if not population_target:
for id in features.keys():
building_counts[id] = features[id]["buildings"] * areas[id]
del features[id]["buildings"]
# Compute the number of buildings per region
cr_building_counts = compute_grouped_values(building_counts, valid_ids, id_to_cr_id)
target_norm = building_counts
cr_target_norm = cr_building_counts
dataset = {
"features": features,
"feature_names":feats_list,
"map_valid_ids": map_valid_ids,
"id_to_cr_id": id_to_cr_id,
"cr_regions": cr_regions,
"cr_areas": cr_areas,
"areas": areas,
"valid_ids": valid_ids,
"geo_metadata": geo_metadata,
"target_norm" : target_norm,
"cr_target_norm" : cr_target_norm,
"cr_census_arr": cr_census_arr,
"valid_census": valid_census,
"num_coarse_regions": num_coarse_regions
}
return dataset
def compute_prediction_map_metrics(dataset, dataset_name, pred_map, inputs, output_dir):
input_buildings = inputs["buildings"]
map_valid_ids = dataset["map_valid_ids"]
valid_ids = dataset["valid_ids"]
valid_census = dataset["valid_census"]
cr_regions = dataset["cr_regions"]
cr_census_arr = dataset["cr_census_arr"]
num_coarse_regions = dataset["num_coarse_regions"]
geo_metadata = dataset["geo_metadata"]
rst_wp_regions_path = cfg.metadata[dataset_name]["rst_wp_regions_path"]
wp_rst_regions = gdal.Open(rst_wp_regions_path).ReadAsArray().astype(np.uint32)
wp_ids = list(np.unique(wp_rst_regions))
num_wp_ids = len(wp_ids)
# Get building maps with values between 0 and 1 (sometimes 255 represent no data values)
unnorm_weights = pred_map.copy()
mask = np.multiply(input_buildings > 0, (input_buildings < 255))
# Compute accuracy before disaggregation
pred_map_masked = pred_map
if mask is not None:
final_mask = np.multiply((map_valid_ids == 1).astype(np.float32), mask.astype(np.float32))
pred_map_masked = np.multiply(pred_map, final_mask)
orig_agg_preds_arr = compute_accumulated_values_by_region(wp_rst_regions, pred_map_masked, map_valid_ids, num_wp_ids)
orig_agg_preds = {id: orig_agg_preds_arr[id] for id in valid_ids}
orig_metrics = compute_performance_metrics(orig_agg_preds, valid_census)
print("Metrics before disagg r2 {} mae {} mse {} mape {}".format(orig_metrics["r2"], orig_metrics["mae"], orig_metrics["mse"], orig_metrics["mape"]))
# Disaggregate population using pred maps as weights
disagg_population = disaggregate_weighted_by_preds(cr_census_arr, unnorm_weights,
map_valid_ids, cr_regions, num_coarse_regions, output_dir,
mask=mask, save_images=True, geo_metadata=geo_metadata,
return_global_scale=False)
# Aggregate pixel level predictions to the finest level region
agg_preds_arr = compute_accumulated_values_by_region(wp_rst_regions, disagg_population, map_valid_ids, num_wp_ids)
agg_preds = {id: agg_preds_arr[id] for id in valid_ids}
preds_and_gt_dict = {}
for id in valid_census.keys():
preds_and_gt_dict[id] = {"pred": agg_preds[id], "gt": valid_census[id]}
# Compute metrics
metrics = compute_performance_metrics(agg_preds, valid_census)
print("Metrics after disagg r2 {} mae {} mse {} mape {}".format(metrics["r2"], metrics["mae"], metrics["mse"], metrics["mape"]))
def train_model_with_agg_data_for_transfer_task(preproc_data_dir, output_dir, train_dataset_name, test_dataset_name,
built_up_area_agg, train_perc, train_level, random_seed,
random_seed_folds, population_target, log_of_target):
# Create output directory if it does not exist
if not os.path.exists(output_dir):
os.makedirs(output_dir)
test_but_not_train = list(set(test_dataset_name) - set(train_dataset_name) )
all_dataset_names = train_dataset_name + test_but_not_train
datasets = {}
for ds in all_dataset_names:
datasets[ds] = get_dataset(ds, preproc_data_dir, built_up_area_agg, population_target)
final_features_arr = []
final_density_arr = []
for i,ds in enumerate(train_dataset_name):
dataset = datasets[ds]
feats_list = dataset["feature_names"]
features = dataset["features"]
valid_ids = dataset["valid_ids"]
id_to_cr_id = dataset["id_to_cr_id"]
areas = dataset["areas"]
cr_areas = dataset["cr_areas"]
cr_census_arr = dataset["cr_census_arr"]
cr_target_norm = dataset["cr_target_norm"]
target_norm = dataset["target_norm"]
valid_census = dataset["valid_census"]
#id_offset = 0
if train_level[i] == 'c':
#id_offset = 1
cr_features = compute_avg_feats(feats_list, features, valid_ids, id_to_cr_id, areas, cr_areas)
features_arr = transform_dict_to_matrix(cr_features)
density = compute_density(cr_target_norm, cr_census_arr, list(cr_areas.keys()))
else:
valid_features = {id:features[id] for id in valid_census.keys()}
features_arr = transform_dict_to_matrix(valid_features)
density = compute_density(target_norm, valid_census, list(valid_census.keys()))
density_arr = transform_dict_to_array(density)
final_features_arr.append(features_arr)
final_density_arr.append(density_arr)
final_features_arr = np.concatenate(final_features_arr, axis=0)
final_density_arr = np.concatenate(final_density_arr, axis=0)
num_samples = final_features_arr.shape[0]
if train_perc < 1:
np.random.seed(random_seed_folds)
orig_indices = np.arange(num_samples)
np.random.shuffle(orig_indices)
# Split dataset
num_train_samples = int(num_samples * train_perc)
train_idxs = orig_indices[:num_train_samples]
val_idxs = orig_indices[num_train_samples:]
features_train_arr = final_features_arr[train_idxs, :]
density_train_arr = final_density_arr[train_idxs]
features_val_arr = final_features_arr[val_idxs, :]
density_val_arr = final_density_arr[val_idxs]
# remove samples with density equal to 0 because when taking the log it does not work that well
mask_valid_train_samples = density_train_arr > 0
valid_features_train_arr = features_train_arr[mask_valid_train_samples, :]
valid_density_train_arr = density_train_arr[mask_valid_train_samples]
mask_valid_val_samples = density_val_arr > 0
valid_features_val_arr = features_val_arr[mask_valid_val_samples, :]
valid_density_val_arr = density_val_arr[mask_valid_val_samples]
# obtain best RF paramenters
best_n_estimators, best_max_depth = perform_rf_parameter_search(valid_features_train_arr, valid_density_train_arr,
valid_features_val_arr, valid_density_val_arr, log_of_target, random_seed)
# train the model
model = RandomForestRegressor(random_state=random_seed, n_jobs=4, n_estimators=best_n_estimators, max_depth=best_max_depth)
final_valid_density_train_arr = valid_density_train_arr
if log_of_target:
final_valid_density_train_arr = np.log(valid_density_train_arr)
model.fit(valid_features_train_arr, final_valid_density_train_arr)
print("feature importance {}".format(model.feature_importances_))
# Perform prediction in each test dataset country
for i,ds in enumerate(test_dataset_name):
test_dataset = datasets[ds]
input_paths = cfg.input_paths[ds]
inputs = read_input_raster_data(input_paths)
feats_list = test_dataset["feature_names"]
all_pixel_features, height, width = get_all_pixel_features(inputs, feats_list)
predictions = model.predict(all_pixel_features)
pred_map = predictions.reshape((height, width))
if log_of_target:
pred_map = np.exp(pred_map)
pred_map = pred_map.astype(np.float32)
compute_prediction_map_metrics(test_dataset, ds, pred_map, inputs, output_dir)
else:
# remove samples with density equal to 0 because when taking the log it does not work that well
mask_valid_train_samples = final_density_arr > 0
valid_features_train_arr = final_features_arr[mask_valid_train_samples, :]
valid_density_train_arr = final_density_arr[mask_valid_train_samples]
if log_of_target:
valid_density_train_arr = np.log(valid_density_train_arr)
# Fit model
model = RandomForestRegressor(random_state=random_seed, n_jobs=4)
model.fit(valid_features_train_arr, valid_density_train_arr)
print("feature importance {}".format(model.feature_importances_))
for i,ds in enumerate(test_dataset_name):
test_dataset = datasets[ds]
input_paths = cfg.input_paths[ds]
inputs = read_input_raster_data(input_paths)
input_buildings = inputs["buildings"]
# Perform prediction per pixel
pred_map = perform_prediction_at_pixel_level(inputs, feats_list, model)
if log_of_target:
pred_map = np.exp(pred_map)
pred_map = pred_map.astype(np.float32)
if not population_target:
preproc_input_buildings = np.multiply(input_buildings, np.multiply(input_buildings > 0, (input_buildings < 255)))
pred_map = pred_map * preproc_input_buildings
compute_prediction_map_metrics(test_dataset, ds, pred_map, inputs, output_dir)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--preproc_data_dir", "-pre_dir", type=str, default="", help="Preprocessed data directory containing pickle files")
parser.add_argument("--output_dir", "-out", type=str, default="", help="Output dir ")
parser.add_argument("--train_dataset_name", "-train", type=str, help="Train Dataset name (separated by commas)", required=True)
parser.add_argument("--test_dataset_name", "-test", type=str, help="Test Dataset name (separated by commas)", required=True)
parser.add_argument("--built_up_area_agg", "-bu", type=lambda x: bool(strtobool(x)), default=True, help="Flag that indicates if we should aggregate features using only the built up area")
parser.add_argument("--train_perc", "-tperc", type=float, default=0.8, help="Traininig percentage")
parser.add_argument("--train_level", "-train_lvl", type=str, default="f", help="Train census level: c (coarse), f (finest)")
parser.add_argument("--random_seed", "-rs", type=int, default=42, help="Random seed for the RF model")
parser.add_argument("--random_seed_folds", "-rsf", type=int, default=1610, help="Random seed used to dataset splitting.")
parser.add_argument("--population_target", "-pop_target", type=lambda x: bool(strtobool(x)), default=True, help="Use population as target")
parser.add_argument("--log_of_target", "-log", type=lambda x: bool(strtobool(x)), default=True, help="Apply log to the target")
args = parser.parse_args()
# check arguments and fill with default values
args.train_dataset_name = unroll_arglist(args.train_dataset_name)
args.train_level = unroll_arglist(args.train_level, 'c', len(args.train_dataset_name))
args.test_dataset_name = unroll_arglist(args.test_dataset_name)
train_model_with_agg_data_for_transfer_task(args.preproc_data_dir,
args.output_dir, args.train_dataset_name, args.test_dataset_name, args.built_up_area_agg,
args.train_perc, args.train_level,
args.random_seed, args.random_seed_folds, args.population_target, args.log_of_target)
if __name__ == "__main__":
main()