-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCOMA.py
178 lines (123 loc) · 5.6 KB
/
COMA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
class Memory(nn.Module):
def __init__(self, agent_num, action_dim):
super(Memory, self).__init__()
self.agent_num = agent_num
self.action_dim = action_dim
self.actions = []
self.observations = []
self.pi = [[] for _ in range(agent_num)]
self.reward = []
self.done = [[] for _ in range(agent_num)]
def get(self, device):
actions = torch.tensor(self.actions)
observations = self.observations
pi = []
for i in range(self.agent_num):
pi.append(torch.cat(self.pi[i]).view(len(self.pi[i]), self.action_dim))
reward = torch.tensor(self.reward)
done = self.done
return actions.to(device), observations, pi, reward, done
def clear(self):
self.actions = []
self.observations = []
self.pi = [[] for _ in range(self.agent_num)]
self.reward = []
self.done = [[] for _ in range(self.agent_num)]
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return F.softmax(self.fc3(x), dim=-1)
class Critic(nn.Module):
def __init__(self, agent_num, state_dim, action_dim):
super(Critic, self).__init__()
input_dim = 1 + state_dim * agent_num + agent_num
self.fc1 = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class COMA(nn.Module):
def __init__(self, agent_num, state_dim, action_dim, lr_c, lr_a, gamma, target_update_steps):
super(COMA, self).__init__()
self.agent_num = agent_num
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.target_update_steps = target_update_steps
self.memory = Memory(agent_num, action_dim)
self.actors = nn.ModuleList([Actor(state_dim, action_dim) for _ in range(agent_num)])
self.critic = Critic(agent_num, state_dim, action_dim)
self.critic_target = Critic(agent_num, state_dim, action_dim)
self.critic_target.load_state_dict(self.critic.state_dict())
self.actors_optimizer = [torch.optim.Adam(self.actors[i].parameters(), lr=lr_a) for i in range(agent_num)]
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=lr_c)
self.count = 0
def get_actions(self, observations):
actions = []
for i in range(self.agent_num):
dist = self.actors[i](observations[i])
action = Categorical(dist).sample()
self.memory.pi[i].append(dist)
actions.append(action)
self.memory.observations.append(observations)
self.memory.actions.append(actions)
return actions
def train(self, device):
actor_optimizer = self.actors_optimizer
critic_optimizer = self.critic_optimizer
actions, observations, pi, reward, done = self.memory.get(device)
for i in range(self.agent_num):
# train actor
input_critic = self.build_input_critic(i, observations, actions, device)
Q_target = self.critic_target(input_critic).detach()
action_taken = actions.type(torch.long)[:, i].reshape(-1, 1)
baseline = torch.sum(pi[i] * Q_target, dim=1).detach()
Q_taken_target = torch.gather(Q_target, dim=1, index=action_taken).squeeze()
advantage = Q_taken_target - baseline
log_pi = torch.log(torch.gather(pi[i], dim=1, index=action_taken).squeeze())
actor_loss = - torch.mean(advantage * log_pi)
actor_optimizer[i].zero_grad()
actor_loss.backward()
torch.nn.utils.clip_grad_norm_(self.actors[i].parameters(), 5)
actor_optimizer[i].step()
# train critic
Q = self.critic(input_critic)
action_taken = actions.type(torch.long)[:, i].reshape(-1, 1)
Q_taken = torch.gather(Q, dim=1, index=action_taken).squeeze()
# TD(0)
r = torch.zeros(len(reward[:, i])).to(device)
for t in range(len(reward[:, i])):
if done[i][t]:
r[t] = reward[:, i][t]
else:
r[t] = reward[:, i][t] + self.gamma * Q_taken_target[t + 1]
critic_loss = torch.mean((r - Q_taken) ** 2)
critic_optimizer.zero_grad()
critic_loss.backward()
torch.nn.utils.clip_grad_norm_(self.critic.parameters(), 5)
critic_optimizer.step()
if self.count == self.target_update_steps:
self.critic_target.load_state_dict(self.critic.state_dict())
self.count = 0
else:
self.count += 1
self.memory.clear()
def build_input_critic(self, agent_id, observations, actions, device):
batch_size = len(observations)
ids = (torch.ones(batch_size) * agent_id).view(-1, 1).to(device)
observations = torch.cat(observations).view(batch_size, self.state_dim * self.agent_num)
input_critic = torch.cat([observations.type(torch.float32), actions.type(torch.float32)], dim=-1)
input_critic = torch.cat([ids, input_critic], dim=-1)
return input_critic