-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpnp.py
52 lines (47 loc) · 1.34 KB
/
pnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
def pnp_admm(
measurements, forward, forward_adjoint, denoiser,
step_size=1e-4, num_iter=50, max_cgiter=100, cg_tol=1e-7
):
"""
ADMM plug and play
"""
x_h = forward_adjoint(measurements)
def conjugate_gradient(A, b, x0, max_iter, tol):
"""
Conjugate gradient method for solving Ax=b
"""
x = x0
r = b-A(x)
d = r
for _ in range(max_iter):
z = A(d)
rr = torch.sum(r**2)
alpha = rr/torch.sum(d*z)
x += alpha*d
r -= alpha*z
if torch.norm(r)/torch.norm(b) < tol:
break
beta = torch.sum(r**2)/rr
d = r + beta*d
return x
def cg_leftside(x):
"""
Return left side of Ax=b, i.e., Ax
"""
return forward_adjoint(forward(x)) + step_size*x
def cg_rightside(x):
"""
Returns right side of Ax=b, i.e. b
"""
return x_h + step_size*x
# Start
x = torch.zeros_like(x_h)
u = torch.zeros_like(x)
v = torch.zeros_like(x)
for _ in range(num_iter):
b = cg_rightside(v-u)
x = conjugate_gradient(cg_leftside, b, x, max_cgiter, cg_tol)
v = denoiser(x+u)
u += (x - v)
return v