-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_bert_simple.py
472 lines (426 loc) · 21.4 KB
/
main_bert_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import argparse
import os
import random
import math
from contextlib import nullcontext
import transformers
import yaml
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from transformers import BertTokenizer, BertConfig, BertLayer
from utils import init_dist_process_group
from bert_optim import BertAdam
from bert_dataset import BERTDataset
from bert_optim import PolyWarmUpScheduler
from bert_model import BertForPreTrainingEx
from apex.optimizers import FusedLAMB
import asdfghjkl as asdl
try:
import wandb
except ImportError:
wandb = None
parser = argparse.ArgumentParser()
# Dataset & BERT
parser.add_argument("--corpus_path", default=None, type=str, required=True,
help="The input train corpus.")
parser.add_argument('--corpus_lines', default=None, type=int)
parser.add_argument("--vocab_path", type=str, required=True)
parser.add_argument("--on_memory", action='store_true',
help="Whether to load train samples into memory or use disk")
parser.add_argument("--do_lower_case", action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--bert_config_path", type=str, required=True,
help="config to use.")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
# Training
parser.add_argument("--batch_size", default=32, type=int,
help="Batch size for training.")
parser.add_argument('--num_optimization_steps', default=None, type=int,
help="Total number of optimization steps to perform.")
parser.add_argument("--num_epochs", default=None, type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=3e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--ngd_learning_rate", default=3e-5, type=float,
help="The initial learning rate for NGD.")
parser.add_argument("--ngd_momentum", default=0.9, type=float)
parser.add_argument("--max_grad_norm", type=float, default=1.)
parser.add_argument("--ngd_max_grad_norm", type=float, default=100.)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--beta1", type=float, default=0.9)
parser.add_argument("--beta2", type=float, default=0.999)
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for.")
parser.add_argument("--damping", type=float, default=0.01)
parser.add_argument("--inv_interval", type=int, default=1)
parser.add_argument('--weight_scaling', action='store_true')
parser.add_argument('--lars', action='store_true')
parser.add_argument('--adam', action='store_true')
parser.add_argument('--sgd', action='store_true')
parser.add_argument('--ngd_with_adam', action='store_true')
parser.add_argument('--ngd_with_lamb', action='store_true')
# Others
parser.add_argument('--checkpoint_dir', default=None, type=str,
help='path to directory to save checkpoints')
parser.add_argument('--save_checkpoint_steps', type=int, default=200)
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--seed', type=int, default=1,
help="random seed for initialization")
parser.add_argument('--collective_backend', default=dist.Backend.NCCL, type=str)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--profile', action='store_true')
parser.add_argument('--ngd_training', action='store_true')
parser.add_argument('--record_ngd', action='store_true')
parser.add_argument('--observe_norm', action='store_true')
parser.add_argument('--log_interval', type=int, default=100)
parser.add_argument('--config', type=str, default=None)
parser.add_argument('--subset_size', type=int, default=None)
parser.add_argument('--wandb', action='store_true')
def main():
total_steps = 0
for epoch in range(num_epochs):
if is_distributed:
dist.barrier()
# deterministically shuffle based on epoch
train_loader.sampler.set_epoch(epoch)
steps_for_this_epoch = min(num_steps - total_steps, max_steps_per_epoch)
train_one_epoch(epoch, total_steps, steps_for_this_epoch)
total_steps += steps_for_this_epoch
if is_master:
if args.checkpoint_dir is not None:
save_checkpoint(num_epochs, num_steps)
print('Finished.')
def train_one_epoch(epoch, step, num_steps_for_this_epoch):
train_iterator = iter(train_loader)
after_reset = False
for i in range(num_steps_for_this_epoch):
if not args.adam:
for lr_scheduler in lr_schedulers:
lr_scheduler.step()
for optim in optimizers:
optim.zero_grad()
is_inv_timing = is_ngd_training and (step+i) % args.inv_interval == 0 # or after_reset
total_loss = 0
total_masked_lm_loss = 0
total_next_sentence_loss = 0
for j in range(grad_acc_steps):
inputs = next(train_iterator)
for key in inputs:
inputs[key] = inputs[key].to(device)
cov_cxt = asdl.no_centered_cov(model, shapes=ngd.fisher_shape, ignore_modules=ngd.ignore_modules) \
if is_ngd_training and is_inv_timing else nullcontext()
with cov_cxt as cxt:
outputs = model(**inputs)
total_loss += float(outputs['loss']) / num_micro_batches_per_step
total_masked_lm_loss += float(outputs['masked_lm_loss']) / num_micro_batches_per_step
total_next_sentence_loss += float(outputs['next_sentence_loss']) / num_micro_batches_per_step
loss = outputs['loss']
if is_ngd_training:
loss *= micro_batch_size * max_seq_length
else:
loss /= num_micro_batches_per_step
no_sync_if_needed = model.no_sync() \
if isinstance(model, DDP) and j < grad_acc_steps - 1 \
else nullcontext()
with no_sync_if_needed:
loss.backward()
if is_ngd_training:
if is_inv_timing:
ngd.save_curvature(cxt=cxt, scale=1/num_tokens)
loss /= num_tokens
if is_ngd_training:
if is_inv_timing:
ngd.sync_curvature(kron=['A', 'B'], enabled=is_distributed)
ngd.update_inv(kron=['A', 'B'], zero_curvature=True)
ngd.sync_grad_pre_precondition(enabled=is_distributed)
ngd.precondition()
ngd.sync_grad_post_precondition(enabled=is_distributed)
for p in model.parameters():
if p.grad is not None:
p.grad.data /= num_tokens
if is_distributed:
grads = [p.grad for p in model.parameters() if p.grad is not None]
packed_tensor = parameters_to_vector(grads)
dist.all_reduce(packed_tensor)
vector_to_parameters(packed_tensor, grads)
for optim in optimizers:
optim.step()
if not isinstance(optim, FusedLAMB):
for pg in optim.param_groups:
pg['step'] += 1
if is_distributed:
total_loss = torch.tensor(total_loss).to(device)
total_masked_lm_loss = torch.tensor(total_masked_lm_loss).to(device)
total_next_sentence_loss = torch.tensor(total_next_sentence_loss).to(device)
dist.reduce(total_loss, dst=0)
dist.reduce(total_masked_lm_loss, dst=0)
dist.reduce(total_next_sentence_loss, dst=0)
if (step+i) % args.log_interval == 0:
if is_master:
print(f'epoch{epoch+1} step{step+i+1} loss = {float(total_loss)} '
f'({float(total_masked_lm_loss)} + {float(total_next_sentence_loss)})', flush=True)
if args.wandb:
lr = optimizers[0].param_groups[0]['lr']
log = {'epoch': epoch+1, 'step': step+i+1,
'loss': float(total_loss),
'masked_lm_loss': float(total_masked_lm_loss),
'next_sentence_loss': float(total_next_sentence_loss),
'learning_rate': lr}
if args.observe_norm:
log['p_norm'] = np.sqrt(sum([float(p.data.norm()) ** 2 for p in model.parameters()]))
log['g_norm'] = np.sqrt(sum([float(p.grad.norm()) ** 2 for p in model.parameters() if p.grad is not None]))
if is_ngd_training:
log['ngd_p_norm '] = np.sqrt(sum([float(p.data.norm()) ** 2 for p in ngd_params]))
log['ngd_g_norm'] = np.sqrt(sum([float(p.grad.norm()) ** 2 for p in ngd_params if p.grad is not None]))
for pname, p in model.named_parameters():
log[f'{pname}_p_norm'] = p.norm()
log[f'{pname}_g_norm'] = p.grad.norm()
wandb.log(log)
if args.checkpoint_dir is not None and (step+i+1) % args.save_checkpoint_steps == 0 and is_master:
save_checkpoint(epoch, step+i+1)
def save_checkpoint(epoch, step):
state = {
'epoch': epoch + 1,
'step': step,
'model': model.module.state_dict() if isinstance(model, DDP) else model.state_dict(),
'optimizer': optimizers[0].state_dict()
}
if is_ngd_training:
state['ngd_optimizer'] = optimizers[1].state_dict()
assert os.path.isdir(args.checkpoint_dir)
ckpt_file_path = os.path.join(args.checkpoint_dir, f'epoch{epoch+1}_step{step}.pt')
torch.save(state, ckpt_file_path)
print(f'Saved checkpoint to {ckpt_file_path}', flush=True)
global prev_prev_checkpoint_path, prev_checkpoint_path
prev_prev_checkpoint_path = prev_checkpoint_path
prev_checkpoint_path = ckpt_file_path
if __name__ == "__main__":
args = parser.parse_args()
dict_args = vars(args)
if args.config is not None:
dict_args.update(yaml.safe_load(open(args.config, 'r')))
# Setup rank and device
local_rank, local_size, rank, world_size = init_dist_process_group(backend=args.collective_backend)
assert local_size <= torch.cuda.device_count()
torch.cuda.set_device(local_rank)
device = torch.cuda.current_device()
is_master = rank == 0
# Set random seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
is_distributed = world_size > 1
is_ngd_training = args.record_ngd or args.ngd_training
# Prepare BERT model
bert_config = BertConfig.from_json_file(args.bert_config_path)
model = BertForPreTrainingEx(config=bert_config).to(device)
checkpoint = None
if args.resume is not None:
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model'])
elif is_distributed:
packed_tensor = parameters_to_vector(model.parameters())
dist.broadcast(packed_tensor, src=0)
vector_to_parameters(packed_tensor, model.parameters())
if is_distributed and not is_ngd_training:
model = DDP(model)
# Prepare BERT dataset
batch_size = args.batch_size
max_seq_length = args.max_seq_length
num_tokens = batch_size * max_seq_length
assert batch_size % world_size == 0
local_batch_size = batch_size // world_size
grad_acc_steps = args.gradient_accumulation_steps
assert local_batch_size % grad_acc_steps == 0
micro_batch_size = local_batch_size // grad_acc_steps
tokenizer = BertTokenizer(args.vocab_path, do_lower_case=args.do_lower_case)
train_dataset = BERTDataset(args.corpus_path,
tokenizer,
seq_len=max_seq_length,
corpus_lines=args.corpus_lines,
encoding='latin-1',
on_memory=args.on_memory)
if args.subset_size is not None:
train_dataset = torch.utils.data.Subset(train_dataset, range(args.subset_size))
sampler = None
if world_size > 1:
sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank)
train_loader = DataLoader(train_dataset,
sampler=sampler,
batch_size=micro_batch_size,
drop_last=True,
num_workers=args.num_workers)
# Set the number of optimization steps and epochs
num_micro_batches_per_step = world_size * grad_acc_steps
max_steps_per_epoch = len(train_dataset) // batch_size
num_steps = args.num_optimization_steps
if num_steps is None:
assert args.num_epochs, 'num_optimization_steps or num_epochs needs to be specified.'
num_epochs = args.num_epochs
num_steps = max_steps_per_epoch * args.num_epochs
else:
total_num_samples = num_steps * batch_size
num_epochs = math.ceil(total_num_samples / len(train_dataset))
# Prepare natural gradient preconditioner
ngd: asdl.EmpiricalNaturalGradient = None
ngd_params = []
non_ngd_params = []
if is_ngd_training:
module_partitions = None
if is_distributed:
bert_layers = [m for m in model.modules() if isinstance(m, BertLayer)]
partition_size = int(len(bert_layers) / world_size) # floor
if partition_size > 0:
module_partitions = []
for i in range(world_size):
module_list = nn.ModuleList(bert_layers[partition_size * i: partition_size * i + partition_size])
module_partitions.append([m for m in module_list.modules() if isinstance(m, nn.Linear)])
ngd = asdl.EmpiricalNaturalGradient(model,
fisher_shape=[(nn.Linear, asdl.SHAPE_KRON),
(nn.LayerNorm, asdl.SHAPE_UNIT_WISE),
(nn.Embedding, asdl.SHAPE_KRON)],
damping=args.damping,
ignore_modules=['cls', nn.Embedding, nn.LayerNorm],
module_partitions=module_partitions,
record_mode=args.record_ngd)
for module in model.modules():
if module in ngd.modules_for_curvature:
ngd_params += list(module.parameters())
else:
non_ngd_params += list(module.parameters())
# Prepare optimizers
ngd_decay_param_group = {'params': [], 'weight_decay': args.weight_decay, 'b2': -1,
'lr': args.ngd_learning_rate, 'max_grad_norm': args.ngd_max_grad_norm}
ngd_no_decay_param_group = {'params': [], 'weight_decay': 0., 'b2': -1,
'lr': args.ngd_learning_rate, 'max_grad_norm': args.ngd_max_grad_norm}
if args.ngd_with_adam:
ngd_decay_param_group.pop('b2')
ngd_no_decay_param_group.pop('b2')
decay_param_group = {'params': [], 'weight_decay': args.weight_decay}
no_decay_param_group = {'params': [], 'weight_decay': 0.}
if args.weight_scaling:
no_decay_param_group['weight_scaling'] = False
for name, m in model.named_modules():
if 'word_embeddings' in name:
continue
if isinstance(m, nn.LayerNorm):
if is_ngd_training and m in ngd.modules_for_curvature:
ngd_no_decay_param_group['params'] += list(m.parameters())
else:
no_decay_param_group['params'] += list(m.parameters())
elif isinstance(m, (nn.Linear, nn.Embedding)):
if hasattr(m, 'bias') and m.bias is not None:
if is_ngd_training and m in ngd.modules_for_curvature:
ngd_no_decay_param_group['params'].append(m.bias)
else:
no_decay_param_group['params'].append(m.bias)
if is_ngd_training and m in ngd.modules_for_curvature:
ngd_decay_param_group['params'].append(m.weight)
else:
decay_param_group['params'].append(m.weight)
optimizers = []
lr_schedulers = []
if args.adam:
params = [decay_param_group, no_decay_param_group]
if is_ngd_training:
params += [ngd_decay_param_group, ngd_no_decay_param_group]
optimizer = BertAdam(params,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_steps,
b1=args.beta1,
b2=args.beta2,
max_grad_norm=args.max_grad_norm,
weight_scaling=args.weight_scaling,
lars=args.lars)
for pg in optimizer.param_groups:
pg['step'] = 0
lr_schedulers.append(PolyWarmUpScheduler(optimizer,
warmup=args.warmup_proportion,
total_steps=num_steps,
base_lr=args.learning_rate,
device=device))
optimizers.append(optimizer)
else:
if args.sgd:
optimizer = torch.optim.SGD([decay_param_group, no_decay_param_group],
lr=args.learning_rate,
momentum=args.momentum)
for pg in optimizer.param_groups:
pg['step'] = 0
else:
optimizer = FusedLAMB([decay_param_group, no_decay_param_group], lr=args.learning_rate)
lr_schedulers.append(PolyWarmUpScheduler(optimizer,
warmup=args.warmup_proportion,
total_steps=num_steps,
base_lr=args.learning_rate,
device=device))
optimizers.append(optimizer)
if is_ngd_training:
if args.ngd_with_lamb:
optimizer = FusedLAMB([ngd_decay_param_group, ngd_no_decay_param_group], lr=args.learning_rate)
else:
optimizer = torch.optim.SGD([ngd_decay_param_group, ngd_no_decay_param_group],
lr=args.ngd_learning_rate,
momentum=args.ngd_momentum)
for pg in optimizer.param_groups:
pg['step'] = 0
lr_schedulers.append(PolyWarmUpScheduler(optimizer,
warmup=args.warmup_proportion,
total_steps=num_steps,
base_lr=args.ngd_learning_rate,
device=device))
optimizers.append(optimizer)
if checkpoint is not None:
for group in checkpoint['optimizer']['param_groups']:
group['step'] = 0
group['lr'] = args.learning_rate
optimizers[0].load_state_dict(checkpoint['optimizer'])
if is_ngd_training:
for group in checkpoint['ngd_optimizer']['param_groups']:
group['step'] = 0
group['lr'] = args.ngd_learning_rate
optimizers[1].load_state_dict(checkpoint['ngd_optimizer'])
unused_keys = []
if not is_ngd_training:
unused_keys.extend(['ngd_learning_rate', 'ngd_momentum', 'ngd_max_grad_norm', 'damping', 'inv_interval'])
if not args.adam:
unused_keys.extend(['beta1', 'beta2'])
for key in unused_keys:
dict_args.pop(key)
prev_prev_checkpoint_path = prev_checkpoint_path = None
prev_checkpoint_loss = None
if is_distributed:
dist.barrier()
if is_master:
if args.wandb:
wandb.init(entity=os.getenv('WANDB_ENTITY'),
project=os.getenv('WANDB_PROJECT'),
settings=wandb.Settings(start_method="thread"))
wandb.config.update(dict_args)
print('============================')
print(f'num_epochs: {num_epochs}')
print(f'num_optimization_steps: {num_steps}')
print(f'world_size: {world_size}')
print('----------------------------')
for key, value in dict_args.items():
print(f'{key}: {value}')
print('============================')
if args.profile:
with torch.cuda.profiler.profile():
main()
else:
main()