forked from DebadityaPal/RoBERTa-NL2SQL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdev_function.py
350 lines (285 loc) · 18.5 KB
/
dev_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from dbengine_sqlnet import DBEngine
import os
import seq2sql_model_training_functions
import corenlp_local
import load_data
import roberta_training
import infer_functions
import torch
from tqdm.notebook import tqdm
import seq2sql_model_testing
def train(seq2sql_model,roberta_model,model_optimizer,roberta_optimizer,roberta_tokenizer,roberta_config,path_wikisql,train_loader):
roberta_model.train()
seq2sql_model.train()
results=[]
average_loss = 0
count_select_column = 0 # count the # of correct predictions of select column
count_select_agg = 0 # of selectd aggregation
count_where_number = 0 # of where number
count_where_column = 0 # of where column
count_where_operator = 0 # of where operator
count_where_value = 0 # of where-value
count_where_value_index = 0 # of where-value index (on question tokens)
count_logical_form_acc = 0 # of logical form accuracy
count_execution_acc = 0 # of execution accuracy
# Engine for SQL querying.
engine = DBEngine(os.path.join(path_wikisql, f"train.db"))
count = 0 # count the # of examples
for batch_index, batch in enumerate(tqdm(train_loader)):
count += len(batch)
# if batch_index > 2:
# break
# Get fields
# nlu : natural language utterance
# nlu_t: tokenized nlu
# sql_i: canonical form of SQL query
# sql_q: full SQL query text. Not used.
# sql_t: tokenized SQL query
# tb : table metadata. No row data needed
# hs_t : tokenized headers. Not used.
natural_lang_utterance, natural_lang_utterance_tokenized, sql_canonical, \
_, _, table_metadata, _, headers = load_data.get_fields(batch)
select_column_ground, select_agg_ground, where_number_ground, \
where_column_ground, where_operator_ground, _ = roberta_training.get_ground_truth_values(sql_canonical)
# get ground truth where-value index under CoreNLP tokenization scheme. It's done already on trainset.
natural_lang_embeddings, header_embeddings, question_token_length, header_token_length, header_count, \
natural_lang_double_tokenized, punkt_to_roberta_token_indices, roberta_to_punkt_token_indices \
= roberta_training.get_wemb_roberta(roberta_config, roberta_model, roberta_tokenizer,
natural_lang_utterance_tokenized, headers,max_seq_length= 222,
num_out_layers_n=2, num_out_layers_h=2)
# natural_lang_embeddings: natural language embedding
# header_embeddings: header embedding
# question_token_length: token lengths of each question
# header_token_length: header token lengths
# header_count: the number of columns (headers) of the tables.
where_value_index_ground_corenlp = corenlp_local.get_g_wvi_corenlp(batch)
try:
#
where_value_index_ground = corenlp_local.get_g_wvi_bert_from_g_wvi_corenlp(punkt_to_roberta_token_indices, where_value_index_ground_corenlp)
except:
# Exception happens when where-condition is not found in natural_lang_double_tokenized.
# In this case, that train example is not used.
# During test, that example considered as wrongly answered.
# e.g. train: 32.
continue
knowledge = []
for k in batch:
if "bertindex_knowledge" in k:
knowledge.append(k["bertindex_knowledge"])
else:
knowledge.append(max(question_token_length)*[0])
knowledge_header = []
for k in batch:
if "header_knowledge" in k:
knowledge_header.append(k["header_knowledge"])
else:
knowledge_header.append(max(header_count) * [0])
# score
select_column_score, select_agg_score, where_number_score, where_column_score,\
where_operator_score, where_value_score = seq2sql_model(natural_lang_embeddings, question_token_length, header_embeddings,
header_token_length, header_count,
g_sc=select_column_ground, g_sa=select_agg_ground,
g_wn=where_number_ground, g_wc=where_column_ground,
g_wo=where_operator_ground, g_wvi=where_value_index_ground,
knowledge = knowledge,
knowledge_header = knowledge_header)
# Calculate loss & step
loss = seq2sql_model_training_functions.Loss_sw_se(select_column_score, select_agg_score, where_number_score,
where_column_score, where_operator_score, where_value_score,
select_column_ground, select_agg_ground,
where_number_ground, where_column_ground,
where_operator_ground, where_value_index_ground)
model_optimizer.zero_grad()
if roberta_optimizer:
roberta_optimizer.zero_grad()
loss.backward()
model_optimizer.step()
if roberta_optimizer:
roberta_optimizer.step()
# Prediction
select_column_predict, select_agg_predict, where_number_predict, \
where_column_predict, where_operator_predict, where_val_index_predict = seq2sql_model_training_functions.pred_sw_se(
select_column_score, select_agg_score, where_number_score,
where_column_score, where_operator_score, where_value_score)
where_value_string_predict, _ = seq2sql_model_training_functions.convert_pr_wvi_to_string(
where_val_index_predict,
natural_lang_utterance_tokenized, natural_lang_double_tokenized,
roberta_to_punkt_token_indices, natural_lang_utterance)
# Sort where_column_predict:
# Sort where_column_predict when training the model as where_operator_predict and where_val_index_predict are predicted using ground-truth where-column (g_wc)
# In case of 'dev' or 'test', it is not necessary as the ground-truth is not used during inference.
where_column_predict_sorted = seq2sql_model_training_functions.sort_pr_wc(where_column_predict, where_column_ground)
sql_canonical_predict = seq2sql_model_training_functions.generate_sql_i(
select_column_predict, select_agg_predict, where_number_predict,
where_column_predict_sorted, where_operator_predict,
where_value_string_predict, natural_lang_utterance)
# Cacluate accuracy
select_col_batchlist, select_agg_batchlist, where_number_batchlist, \
where_column_batchlist, where_operator_batchlist, where_value_index_batchlist, \
where_value_batchlist = seq2sql_model_training_functions.get_cnt_sw_list(
select_column_ground, select_agg_ground,
where_number_ground, where_column_ground,
where_operator_ground, where_value_index_ground,
select_column_predict, select_agg_predict, where_number_predict,
where_column_predict, where_operator_predict, where_val_index_predict,
sql_canonical, sql_canonical_predict,
mode='train')
logical_form_acc_batchlist = seq2sql_model_training_functions.get_cnt_lx_list(
select_col_batchlist, select_agg_batchlist, where_number_batchlist,
where_column_batchlist,where_operator_batchlist, where_value_batchlist)
# lx stands for logical form accuracy
# Execution accuracy test.
execution_acc_batchlist, _, _ = seq2sql_model_training_functions.get_cnt_x_list(
engine, table_metadata, select_column_ground, select_agg_ground,
sql_canonical, select_column_predict, select_agg_predict, sql_canonical_predict)
# statistics
average_loss += loss.item()
# count
count_select_column += sum(select_col_batchlist)
count_select_agg += sum(select_agg_batchlist)
count_where_number += sum(where_number_batchlist)
count_where_column += sum(where_column_batchlist)
count_where_operator += sum(where_operator_batchlist)
count_where_value_index += sum(where_value_index_batchlist)
count_where_value += sum(where_value_batchlist)
count_logical_form_acc += sum(logical_form_acc_batchlist)
count_execution_acc += sum(execution_acc_batchlist)
average_loss /= count
select_column_acc = count_select_column / count
select_agg_acc = count_select_agg / count
where_number_acc = count_where_number / count
where_column_acc = count_where_column / count
where_operator_acc = count_where_operator / count
where_value_index_acc = count_where_value_index / count
where_value_acc = count_where_value / count
logical_form_acc = count_logical_form_acc / count
execution_acc = count_execution_acc / count
accuracy = [average_loss, select_column_acc, select_agg_acc, where_number_acc, where_column_acc,
where_operator_acc, where_value_index_acc, where_value_acc, logical_form_acc, execution_acc]
return accuracy
def test(seq2sql_model,roberta_model,model_optimizer,roberta_tokenizer,roberta_config,path_wikisql,test_loader,mode="dev"):
roberta_model.eval()
seq2sql_model.eval()
count_batchlist=[]
results=[]
count_select_column = 0 # count the # of correct predictions of select column
count_select_agg = 0 # of selectd aggregation
count_where_number = 0 # of where number
count_where_column = 0 # of where column
count_where_operator = 0 # of where operator
count_where_value = 0 # of where-value
count_where_value_index = 0 # of where-value index (on question tokens)
count_logical_form_acc = 0 # of logical form accuracy
count_execution_acc = 0 # of execution accurac
# Engine for SQL querying.
engine = DBEngine(os.path.join(path_wikisql, mode+".db"))
count = 0
for batch_index, batch in enumerate(tqdm(test_loader)):
count += len(batch)
# if batch_index > 2:
# break
# Get fields
natural_lang_utterance, natural_lang_utterance_tokenized, sql_canonical, \
_, _, table_metadata, _, headers = load_data.get_fields(batch)
select_column_ground, select_agg_ground, where_number_ground, \
where_column_ground, where_operator_ground, _ = roberta_training.get_ground_truth_values(sql_canonical)
# get ground truth where-value index under CoreNLP tokenization scheme. It's done already on trainset.
natural_lang_embeddings, header_embeddings, question_token_length, header_token_length, header_count, \
natural_lang_double_tokenized, punkt_to_roberta_token_indices, roberta_to_punkt_token_indices \
= roberta_training.get_wemb_roberta(roberta_config, roberta_model, roberta_tokenizer,
natural_lang_utterance_tokenized, headers,max_seq_length= 222,
num_out_layers_n=2, num_out_layers_h=2)
# natural_lang_embeddings: natural language embedding
# header_embeddings: header embedding
# question_token_length: token lengths of each question
# header_token_length: header token lengths
# header_count: the number of columns (headers) of the tables.
where_value_index_ground_corenlp = corenlp_local.get_g_wvi_corenlp(batch)
try:
#
where_value_index_ground = corenlp_local.get_g_wvi_bert_from_g_wvi_corenlp(punkt_to_roberta_token_indices, where_value_index_ground_corenlp)
except:
# Exception happens when where-condition is not found in nlu_tt.
# In this case, that train example is not used.
# During test, that example considered as wrongly answered.
# e.g. train: 32.
for b in range(len(natural_lang_utterance)):
curr_results = {}
curr_results["error"] = "Skip happened"
curr_results["nlu"] = natural_lang_utterance[b]
curr_results["table_id"] = table_metadata[b]["id"]
results.append(curr_results)
continue
knowledge = []
for k in batch:
if "bertindex_knowledge" in k:
knowledge.append(k["bertindex_knowledge"])
else:
knowledge.append(max(question_token_length)*[0])
knowledge_header = []
for k in batch:
if "header_knowledge" in k:
knowledge_header.append(k["header_knowledge"])
else:
knowledge_header.append(max(header_count) * [0])
# score
_, _, _, select_column_predict, select_agg_predict, where_number_predict, sql_predict = seq2sql_model.beam_forward(
natural_lang_embeddings, question_token_length, header_embeddings,
header_token_length, header_count, table_metadata,
natural_lang_utterance_tokenized, natural_lang_double_tokenized,
roberta_to_punkt_token_indices, natural_lang_utterance,
beam_size=4, knowledge=knowledge, knowledge_header=knowledge_header)
# sort and generate
where_column_predict, where_operator_predict, _, sql_predict = infer_functions.sort_and_generate_pr_w(sql_predict)
# Follosing variables are just for the consistency with no-EG case.
where_value_index_predict = None # not used
for b, sql_predict_instance in enumerate(sql_predict):
curr_results = {}
curr_results["query"] = sql_predict_instance
curr_results["table_id"] = table_metadata[b]["id"]
curr_results["nlu"] = natural_lang_utterance[b]
results.append(curr_results)
# Cacluate accuracy
select_column_batchlist, select_agg_batchlist, where_number_batchlist, \
where_column_batchlist, where_operator_batchlist, \
where_value_index_batchlist, where_value_batchlist = seq2sql_model_training_functions.get_cnt_sw_list(
select_column_ground, select_agg_ground, where_number_ground,
where_column_ground, where_operator_ground, where_value_index_ground,
select_column_predict, select_agg_predict, where_number_predict, where_column_predict,
where_operator_predict, where_value_index_predict,
sql_canonical, sql_predict,
mode='test')
logical_form_acc_batchlist = seq2sql_model_training_functions.get_cnt_lx_list(select_column_batchlist, select_agg_batchlist, where_number_batchlist, where_column_batchlist,
where_operator_batchlist, where_value_batchlist)
# lx stands for logical form accuracy
# Execution accuracy test.
execution_acc_batchlist, _, _ = seq2sql_model_training_functions.get_cnt_x_list(
engine, table_metadata, select_column_ground, select_agg_ground, sql_canonical, select_column_predict, select_agg_predict, sql_predict)
# statistics
# ave_loss += loss.item()
# count
count_select_column += sum(select_column_batchlist)
count_select_agg += sum(select_agg_batchlist)
count_where_number += sum(where_number_batchlist)
count_where_column += sum(where_column_batchlist)
count_where_operator += sum(where_operator_batchlist)
count_where_value_index += sum(where_value_index_batchlist)
count_where_value += sum(where_value_batchlist)
count_logical_form_acc += sum(logical_form_acc_batchlist)
count_execution_acc += sum(execution_acc_batchlist)
count_curr_batchlist = [select_column_batchlist, select_agg_batchlist, where_number_batchlist, where_column_batchlist, where_operator_batchlist, where_value_batchlist, logical_form_acc_batchlist,execution_acc_batchlist]
count_batchlist.append(count_curr_batchlist)
# ave_loss /= cnt
select_column_acc = count_select_column / count
select_agg_acc = count_select_agg / count
where_number_acc = count_where_number / count
where_column_acc = count_where_column / count
where_operator_acc = count_where_operator / count
where_value_index_acc = count_where_value_index / count
where_value_acc = count_where_value / count
logical_form_acc = count_logical_form_acc / count
execution_acc = count_execution_acc / count
accuracy = [None, select_column_acc, select_agg_acc, where_number_acc,
where_column_acc, where_operator_acc, where_value_index_acc,
where_value_acc, logical_form_acc, execution_acc]
return accuracy, results, count_batchlist