Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training is very slow #55

Open
mixml opened this issue Dec 14, 2018 · 1 comment
Open

Training is very slow #55

mixml opened this issue Dec 14, 2018 · 1 comment

Comments

@mixml
Copy link

mixml commented Dec 14, 2018

$python examples/demo_mnist.py
Using TensorFlow backend.
[ 2018-12-14 13:34:10,577][cascade_classifier.fit_transform] X_groups_train.shape=[(60000, 1, 28, 28)],y_train.shape=(60000,),X_groups_test.shape=no_test,y_test.shape=no_test
[ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] group_dims=[784]
[ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] group_starts=[0]
[ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] group_ends=[784]
[ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] X_train.shape=(60000, 784),X_test.shape=(0, 784)
[ 2018-12-14 13:34:10,645][cascade_classifier.fit_transform] [layer=0] look_indexs=[0], X_cur_train.shape=(60000, 784), X_cur_test.shape=(0, 784)
[ 2018-12-14 13:34:27,575][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_0.predict)=90.02%
[ 2018-12-14 13:34:41,561][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_1.predict)=90.07%
[ 2018-12-14 13:34:55,516][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_2.predict)=90.22%
[ 2018-12-14 13:35:09,470][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_3.predict)=90.11%
[ 2018-12-14 13:35:23,300][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_4.predict)=89.24%
[ 2018-12-14 13:35:23,303][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_cv.predict)=89.93%
[ 2018-12-14 13:35:24,074][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_0.predict)=94.64%
[ 2018-12-14 13:35:24,841][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_1.predict)=94.12%
[ 2018-12-14 13:35:25,624][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_2.predict)=93.92%
[ 2018-12-14 13:35:26,382][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_3.predict)=94.61%
[ 2018-12-14 13:35:27,138][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_4.predict)=94.35%
[ 2018-12-14 13:35:27,144][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_cv.predict)=94.33%
[ 2018-12-14 13:35:27,924][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_0.predict)=94.49%
[ 2018-12-14 13:35:28,705][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_1.predict)=94.85%
[ 2018-12-14 13:35:29,484][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_2.predict)=94.59%
[ 2018-12-14 13:35:30,255][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_3.predict)=94.96%
[ 2018-12-14 13:35:31,042][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_4.predict)=95.02%
[ 2018-12-14 13:35:31,048][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_cv.predict)=94.78%
[ 2018-12-14 14:12:52,985][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_3 - 5_folds.train_0.predict)=91.26%

estimator0~estimator2 is fast, but estimator3 is very slow,how to fixed this problem?

@machao199271
Copy link

Use other estimator, which can be parallel computed. such as estimator0-2, to replace Logistic Regression, estimator3, which can not be parallel computed.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants