-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfat32.c
847 lines (756 loc) · 28.5 KB
/
fat32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
#include "fat32.h"
#include "ata_pio_drv.h"
#include "kheap.h"
#include "common.h"
#include "kernio.h"
f32 *master_fs;
//int x;
//struct f32 {
// //FILE *f;
// uint32_t *FAT;
// struct bios_parameter_block bpb;
// uint32_t partition_begin_sector;
// uint32_t fat_begin_sector;
// uint32_t cluster_begin_sector;
// uint32_t cluster_size;
// uint32_t cluster_alloc_hint;
//};
static void read_bpb(f32 *fs, struct bios_parameter_block *bpb);
static uint32_t sector_for_cluster(f32 *fs, uint32_t cluster);
static void trim_spaces(char *c, int max) {
int i = 0;
while(*c != ' ' && i++ < max) {
c++;
}
if(*c == ' ') *c = 0;
}
static void getSector(f32 *fs, uint8_t *buff, uint32_t sector, uint32_t count) {
ata_pio_read48(sector, count, buff);
}
static void putSector(f32 *fs, uint8_t *buff, uint32_t sector, uint32_t count) {
uint32_t i;
for(i = 0; i < count; i++) {
ata_pio_write48(sector + i, 1, buff + (i * 512));
}
}
static void flushFAT(f32 *fs) {
// TODO: This is not endian-safe. Must marshal the integers into a byte buffer.
putSector(fs, (uint8_t *)fs->FAT, fs->fat_begin_sector, fs->bpb.count_sectors_per_FAT32);
}
static uint16_t readi16(uint8_t *buff, size_t offset)
{
uint8_t *ubuff = buff + offset;
return ubuff[1] << 8 | ubuff[0];
}
static uint32_t readi32(uint8_t *buff, size_t offset) {
uint8_t *ubuff = buff + offset;
return
((ubuff[3] << 24) & 0xFF000000) |
((ubuff[2] << 16) & 0x00FF0000) |
((ubuff[1] << 8) & 0x0000FF00) |
(ubuff[0] & 0x000000FF);
}
/**
* 11 2 The number of Bytes per sector (remember, all numbers are in the little-endian format).
* 13 1 Number of sectors per cluster.
* 14 2 Number of reserved sectors. The boot record sectors are included in this value.
* 16 1 Number of File Allocation Tables (FAT's) on the storage media. Often this value is 2.
* 17 2 Number of directory entries (must be set so that the root directory occupies entire sectors).
* 19 2 The total sectors in the logical volume. If this value is 0, it means there are more than 65535 sectors in the volume, and the actual count is stored in "Large Sectors (bytes 32-35).
* 21 1 This Byte indicates the media descriptor type.
* 22 2 Number of sectors per FAT. FAT12/FAT16 only.
* 24 2 Number of sectors per track.
* 26 2 Number of heads or sides on the storage media.
* 28 4 Number of hidden sectors. (i.e. the LBA of the beginning of the partition.)
* 32 4 Large amount of sector on media. This field is set if there are more than 65535 sectors in the volume.
*/
/**
* 36 4 Sectors per FAT. The size of the FAT in sectors.
* 40 2 Flags.
* 42 2 FAT version number. The high byte is the major version and the low byte is the minor version. FAT drivers should respect this field.
* 44 4 The cluster number of the root directory. Often this field is set to 2.
* 48 2 The sector number of the FSInfo structure.
* 50 2 The sector number of the backup boot sector.
* 52 12 Reserved. When the volume is formated these bytes should be zero.
* 64 1 Drive number. The values here are identical to the values returned by the BIOS interrupt 0x13. 0x00 for a floppy disk and 0x80 for hard disks.
* 65 1 Flags in Windows NT. Reserved otherwise.
* 66 1 Signature (must be 0x28 or 0x29).
* 67 4 VolumeID 'Serial' number. Used for tracking volumes between computers. You can ignore this if you want.
* 71 11 Volume label string. This field is padded with spaces.
* 82 8 System identifier string. Always "FAT32 ". The spec says never to trust the contents of this string for any use.
* 90 420 Boot code.
*/
static void read_bpb(f32 *fs, struct bios_parameter_block *bpb) {
uint8_t sector0[512];
getSector(fs, sector0, 0, 1);
bpb->bytes_per_sector = readi16(sector0, 11);;
bpb->sectors_per_cluster = sector0[13];
bpb->reserved_sectors = readi16(sector0, 14);
bpb->FAT_count = sector0[16];
bpb->dir_entries = readi16(sector0, 17);
bpb->total_sectors = readi16(sector0, 19);
bpb->media_descriptor_type = sector0[21];
bpb->count_sectors_per_FAT12_16 = readi16(sector0, 22);
bpb->count_sectors_per_track = readi16(sector0, 24);
bpb->count_heads_or_sizes_on_media = readi16(sector0, 26);
bpb->count_hidden_sectors = readi32(sector0, 28);
bpb->large_sectors_on_media = readi32(sector0, 32);
// EBR
bpb->count_sectors_per_FAT32 = readi32(sector0, 36);
bpb->flags = readi16(sector0, 40);
bpb->FAT_version = readi16(sector0, 42);
bpb->cluster_number_root_dir = readi32(sector0, 44);
bpb->sector_number_FSInfo = readi16(sector0, 48);
bpb->sector_number_backup_boot_sector = readi16(sector0, 50);
// Skip 12 bytes
bpb->drive_number = sector0[64];
bpb->windows_flags = sector0[65];
bpb->signature = sector0[66];
bpb->volume_id = readi32(sector0, 67);
memcpy(&bpb->volume_label, sector0 + 71, 11); bpb->volume_label[11] = 0;
memcpy(&bpb->system_id, sector0 + 82, 8); bpb->system_id[8] = 0;
}
static uint32_t sector_for_cluster(f32 *fs, uint32_t cluster) {
return fs->cluster_begin_sector + ((cluster - 2) * fs->bpb.sectors_per_cluster);
}
// CLUSTER NUMBERS START AT 2 (for some reason...)
void getCluster(f32 *fs, uint8_t *buff, uint32_t cluster_number) { // static
if(cluster_number >= EOC) {
PANIC("Can't get cluster. Hit End Of Chain.");
}
uint32_t sector = sector_for_cluster(fs, cluster_number);
uint32_t sector_count = fs->bpb.sectors_per_cluster;
getSector(fs, buff, sector, sector_count);
}
static void putCluster(f32 *fs, uint8_t *buff, uint32_t cluster_number) {
uint32_t sector = sector_for_cluster(fs, cluster_number);
uint32_t sector_count = fs->bpb.sectors_per_cluster;
putSector(fs, buff, sector, sector_count);
}
uint32_t get_next_cluster_id(f32 *fs, uint32_t cluster) { // static
return fs->FAT[cluster] & 0x0FFFFFFF;
}
static char *parse_long_name(uint8_t *entries, uint8_t entry_count) {
// each entry can hold 13 characters.
char *name = kmalloc(entry_count * 13);
int i, j;
for(i = 0; i < entry_count; i++) {
uint8_t *entry = entries + (i * 32);
uint8_t entry_no = (uint8_t)entry[0] & 0x0F;
char *name_offset = name + ((entry_no - 1) * 13);
for(j = 1; j < 10; j+=2) {
if(entry[j] >= 32 && entry[j] <= 127) {
*name_offset = entry[j];
}
else {
*name_offset = 0;
}
name_offset++;
}
for(j = 14; j < 25; j+=2) {
if(entry[j] >= 32 && entry[j] <= 127) {
*name_offset = entry[j];
}
else {
*name_offset = 0;
}
name_offset++;
}
for(j = 28; j < 31; j+=2) {
if(entry[j] >= 32 && entry[j] <= 127) {
*name_offset = entry[j];
}
else {
*name_offset = 0;
}
name_offset++;
}
}
return name;
}
static void clear_cluster(f32 *fs, uint32_t cluster) {
uint8_t buffer[fs->cluster_size];
memset(buffer, 0, fs->cluster_size);
putCluster(fs, buffer, cluster);
}
static uint32_t allocateCluster(f32 *fs) {
uint32_t i, ints_per_fat = (512 * fs->bpb.count_sectors_per_FAT32) / 4;
for(i = fs->cluster_alloc_hint; i < ints_per_fat; i++) {
if(fs->FAT[i] == 0) {
fs->FAT[i] = 0x0FFFFFFF;
clear_cluster(fs, i);
fs->cluster_alloc_hint = i+1;
return i;
}
}
for(i = 0; i < fs->cluster_alloc_hint; i++) {
if(fs->FAT[i] == 0) {
fs->FAT[i] = 0x0FFFFFFF;
clear_cluster(fs, i);
fs->cluster_alloc_hint = i+1;
return i;
}
}
return 0;
}
// Creates a checksum for an 8.3 filename
// must be in directory-entry format, i.e.
// fat32.c -> "FAT32 C "
static uint8_t checksum_fname(char *fname) {
uint32_t i;
uint8_t checksum = 0;
for(i = 0; i < 11; i++) {
uint8_t highbit = (checksum & 0x1) << 7;
checksum = ((checksum >> 1) & 0x7F) | highbit;
checksum = checksum + fname[i];
}
return checksum;
}
static void write_8_3_filename(char *fname, uint8_t *buffer) {
memset(buffer, ' ', 11);
uint32_t namelen = strlen(fname);
// find the extension
int i;
int dot_index = -1;
for(i = namelen-1; i >= 0; i--) {
if(fname[i] == '.') {
// Found it!
dot_index = i;
break;
}
}
// Write the extension
if(dot_index >= 0) {
for(i = 0; i < 3; i++) {
uint32_t c_index = dot_index + 1 + i;
uint8_t c = c_index >= namelen ? ' ' : k_toupper(fname[c_index]);
buffer[8 + i] = c;
}
}
else {
for(i = 0; i < 3; i++) {
buffer[8 + i] = ' ';
}
}
// Write the filename.
uint32_t firstpart_len = namelen;
if(dot_index >= 0) {
firstpart_len = dot_index;
}
if(firstpart_len > 8) {
// Write the weird tilde thing.
for(i = 0; i < 6; i++) {
buffer[i] = k_toupper(fname[i]);
}
buffer[6] = '~';
buffer[7] = '1'; // probably need to enumerate like files and increment.
}
else {
// Just write the file name.
uint32_t j;
for(j = 0; j < firstpart_len; j++) {
buffer[j] = k_toupper(fname[j]);
}
}
}
static uint8_t *locate_entries(f32 *fs, uint8_t *cluster_buffer, struct directory *dir, uint32_t count, uint32_t *found_cluster) {
uint32_t dirs_per_cluster = fs->cluster_size / 32;
uint32_t i;
int64_t index = -1;
uint32_t cluster = dir->cluster;
while(1) {
getCluster(fs, cluster_buffer, cluster);
uint32_t in_a_row = 0;
for(i = 0; i < dirs_per_cluster; i++) {
uint8_t *entry = cluster_buffer + (i * 32);
uint8_t first_byte = entry[0];
if(first_byte == 0x00 || first_byte == 0xE5) {
in_a_row++;
}
else {
in_a_row = 0;
}
if(in_a_row == count) {
index = i - (in_a_row - 1);
break;
}
}
if(index >= 0) {
// We found a spot to put our crap!
break;
}
uint32_t next_cluster = fs->FAT[cluster];
if(next_cluster >= EOC) {
next_cluster = allocateCluster(fs);
if(!next_cluster) {
return 0;
}
fs->FAT[cluster] = next_cluster;
}
cluster = next_cluster;
}
*found_cluster = cluster;
return cluster_buffer + (index * 32);
}
static void write_long_filename_entries(uint8_t *start, uint32_t num_entries, char *fname) {
// Create a short filename to use for the checksum.
char shortfname[12];
shortfname[11] = 0;
write_8_3_filename(fname, (uint8_t *)shortfname);
uint8_t checksum = checksum_fname(shortfname);
/* Write the long-filename entries */
// tracks the number of characters we've written into
// the long-filename entries.
uint32_t writtenchars = 0;
char *nameptr = fname;
uint32_t namelen = strlen(fname);
uint8_t *entry = NULL;
uint32_t i;
for(i = 0; i < num_entries; i++) {
// reverse the entry order
entry = start + ((num_entries - 1 - i) * 32);
// Set the entry number
entry[0] = i+1;
entry[13] = checksum;
// Characters are 16 bytes in long-filename entries (j+=2)
// And they only go in certain areas in the 32-byte
// block. (why we have three loops)
uint32_t j;
for(j = 1; j < 10; j+=2) {
if(writtenchars < namelen) {
entry[j] = *nameptr;
}
else {
entry[j] = 0;
}
nameptr++;
writtenchars++;
}
for(j = 14; j < 25; j+=2) {
if(writtenchars < namelen) {
entry[j] = *nameptr;
}
else {
entry[j] = 0;
}
nameptr++;
writtenchars++;
}
for(j = 28; j < 31; j+=2) {
if(writtenchars < namelen) {
entry[j] = *nameptr;
}
else {
entry[j] = 0;
}
nameptr++;
writtenchars++;
}
// Mark the attributes byte as LFN (Long File Name)
entry[11] = LFN;
}
// Mark the last(first) entry with the end-of-long-filename bit
entry[0] |= 0x40;
}
f32 *makeFilesystem(char *fatSystem) {
f32 *fs = kmalloc(sizeof (struct f32));
if(!identify()) {
return NULL;
}
printf("Filesystem identified!\n");
read_bpb(fs, &fs->bpb);
trim_spaces(fs->bpb.system_id, 8);
if(strcmp(fs->bpb.system_id, "FAT32") != 0) {
kfree(fs);
return NULL;
}
printf("Sectors per cluster: %d\n", fs->bpb.sectors_per_cluster);
fs->partition_begin_sector = 0;
fs->fat_begin_sector = fs->partition_begin_sector + fs->bpb.reserved_sectors;
fs->cluster_begin_sector = fs->fat_begin_sector + (fs->bpb.FAT_count * fs->bpb.count_sectors_per_FAT32);
fs->cluster_size = 512 * fs->bpb.sectors_per_cluster;
fs->cluster_alloc_hint = 0;
// Load the FAT
uint32_t bytes_per_fat = 512 * fs->bpb.count_sectors_per_FAT32;
fs->FAT = kmalloc(bytes_per_fat);
uint32_t sector_i;
for(sector_i = 0; sector_i < fs->bpb.count_sectors_per_FAT32; sector_i++) {
uint8_t sector[512];
getSector(fs, sector, fs->fat_begin_sector + sector_i, 1);
uint32_t integer_j;
for(integer_j = 0; integer_j < 512/4; integer_j++) {
fs->FAT[sector_i * (512 / 4) + integer_j]
= readi32(sector, integer_j * 4);
}
}
return fs;
}
void destroyFilesystem(f32 *fs) {
printf("Destroying filesystem.\n");
flushFAT(fs);
kfree(fs->FAT);
kfree(fs);
}
const struct bios_parameter_block *getBPB(f32 *fs) {
return &fs->bpb;
}
void populate_root_dir(f32 *fs, struct directory *dir) {
populate_dir(fs, dir, 2);
}
// Populates dirent with the directory entry starting at start
// Returns a pointer to the next 32-byte chunk after the entry
// or NULL if either start does not point to a valid entry, or
// there are not enough entries to build a struct dir_entry
static uint8_t *read_dir_entry(f32 *fs, uint8_t *start, uint8_t *end, struct dir_entry *dirent) {
uint8_t first_byte = start[0];
uint8_t *entry = start;
if(first_byte == 0x00 || first_byte == 0xE5) {
// NOT A VALID ENTRY!
return NULL;
}
uint32_t LFNCount = 0;
while(entry[11] == LFN) {
LFNCount++;
entry += 32;
if(entry == end) {
return NULL;
}
}
if(LFNCount > 0) {
dirent->name = parse_long_name(start, LFNCount);
}
else {
// There's no long file name.
// Trim up the short filename.
dirent->name = kmalloc(13);
memcpy(dirent->name, entry, 11);
dirent->name[11] = 0;
char extension[4];
memcpy(extension, dirent->name + 8, 3);
extension[3] = 0;
trim_spaces(extension, 3);
dirent->name[8] = 0;
trim_spaces(dirent->name, 8);
if(strlen(extension) > 0) {
uint32_t len = strlen(dirent->name);
dirent->name[len++] = '.';
memcpy(dirent->name + len, extension, 4);
}
}
dirent->dir_attrs = entry[11];;
uint16_t first_cluster_high = readi16(entry, 20);
uint16_t first_cluster_low = readi16(entry, 26);
dirent->first_cluster = first_cluster_high << 16 | first_cluster_low;
dirent->file_size = readi32(entry, 28);
return entry + 32;
}
// This is a complicated one. It parses a directory entry into the dir_entry pointed to by target_dirent.
// root_cluster must point to a buffer big enough for two clusters.
// entry points to the entry the caller wants to parse, and must point to a spot within root_cluster.
// nextentry will be modified to hold the next spot within root_entry to begin looking for entries.
// cluster is the cluster number of the cluster loaded into root_cluster.
// secondcluster will be modified IF this function needs to load another cluster to continue parsing
// the entry, in which case, it will be set to the value of the cluster loaded.
//
void next_dir_entry(f32 *fs, uint8_t *root_cluster, uint8_t *entry, uint8_t **nextentry, struct dir_entry *target_dirent, uint32_t cluster, uint32_t *secondcluster) {
uint8_t *end_of_cluster = root_cluster + fs->cluster_size;
*nextentry = read_dir_entry(fs, entry, end_of_cluster, target_dirent);
if(!*nextentry) {
// Something went wrong!
// Either the directory entry spans the bounds of a cluster,
// or the directory entry is invalid.
// Load the next cluster and retry.
// Figure out how much of the last cluster to "replay"
uint32_t bytes_from_prev_chunk = end_of_cluster - entry;
*secondcluster = get_next_cluster_id(fs, cluster);
if(*secondcluster >= EOC) {
// There's not another directory cluster to load
// and the previous entry was invalid!
// It's possible the filesystem is corrupt or... you know...
// my software could have bugs.
PANIC("FOUND BAD DIRECTORY ENTRY!");
}
// Load the cluster after the previous saved entries.
getCluster(fs, root_cluster + fs->cluster_size, *secondcluster);
// Set entry to its new location at the beginning of root_cluster.
entry = root_cluster + fs->cluster_size - bytes_from_prev_chunk;
// Retry reading the entry.
*nextentry = read_dir_entry(fs, entry, end_of_cluster + fs->cluster_size, target_dirent);
if(!*nextentry) {
// Still can't parse the directory entry.
// Something is very wrong.
PANIC("FAILED TO READ DIRECTORY ENTRY! THE SOFTWARE IS BUGGY!\n");
}
}
}
// TODO: Refactor this. It is so similar to delFile that it would be nice
// to combine the similar elements.
// WARN: If you fix a bug in this function, it's likely you will find the same
// bug in delFile.
void populate_dir(f32 *fs, struct directory *dir, uint32_t cluster) {
dir->cluster = cluster;
uint32_t dirs_per_cluster = fs->cluster_size / 32;
uint32_t max_dirs = 0;
dir->entries = 0;
uint32_t entry_count = 0;
while(1) {
max_dirs += dirs_per_cluster;
dir->entries = krealloc(dir->entries, max_dirs * sizeof (struct dir_entry));
// Double the size in case we need to read a directory entry that
// spans the bounds of a cluster.
uint8_t root_cluster[fs->cluster_size * 2];
getCluster(fs, root_cluster, cluster);
uint8_t *entry = root_cluster;
while((uint32_t)(entry - root_cluster) < fs->cluster_size) {
uint8_t first_byte = *entry;
if(first_byte == 0x00 || first_byte == 0xE5) {
// This directory entry has never been written
// or it has been deleted.
entry += 32;
continue;
}
uint32_t secondcluster = 0;
uint8_t *nextentry = NULL;
struct dir_entry *target_dirent = dir->entries + entry_count;
next_dir_entry(fs, root_cluster, entry, &nextentry, target_dirent, cluster, &secondcluster);
entry = nextentry;
if(secondcluster) {
cluster = secondcluster;
}
entry_count++;
}
cluster = get_next_cluster_id(fs, cluster);
if(cluster >= EOC) break;
}
dir->num_entries = entry_count;
}
static void zero_FAT_chain(f32 *fs, uint32_t start_cluster) {
uint32_t cluster = start_cluster;
while(cluster < EOC && cluster != 0) {
uint32_t next_cluster = fs->FAT[cluster];
fs->FAT[cluster] = 0;
cluster = next_cluster;
}
flushFAT(fs);
}
// TODO: Refactor this. It is so similar to populate_dir that it would be nice
// to combine the similar elements.
// WARN: If you fix a bug in this function, it's likely you will find the same
// bug in populate_dir.
void delFile(f32 *fs, struct directory *dir, char *filename) { //struct dir_entry *dirent) {
uint32_t cluster = dir->cluster;
// Double the size in case we need to read a directory entry that
// spans the bounds of a cluster.
uint8_t root_cluster[fs->cluster_size * 2];
struct dir_entry target_dirent;
// Try to locate and invalidate the directory entries corresponding to the
// filename in dirent.
while(1) {
getCluster(fs, root_cluster, cluster);
uint8_t *entry = root_cluster;
while((uint32_t)(entry - root_cluster) < fs->cluster_size) {
uint8_t first_byte = *entry;
if(first_byte == 0x00 || first_byte == 0xE5) {
// This directory entry has never been written
// or it has been deleted.
entry += 32;
continue;
}
uint32_t secondcluster = 0;
uint8_t *nextentry = NULL;
next_dir_entry(fs, root_cluster, entry, &nextentry, &target_dirent, cluster, &secondcluster);
// We have a target dirent! see if it's the one we want!
if(strcmp(target_dirent.name, filename) == 0) {
// We found it! Invalidate all the entries.
memset(entry, 0, nextentry - entry);
putCluster(fs, root_cluster, cluster);
if(secondcluster) {
putCluster(fs, root_cluster + fs->cluster_size, secondcluster);
}
zero_FAT_chain(fs, target_dirent.first_cluster);
kfree(target_dirent.name);
return;
}
else {
// We didn't find it. Continue.
entry = nextentry;
if(secondcluster) {
cluster = secondcluster;
}
}
kfree(target_dirent.name);
}
cluster = get_next_cluster_id(fs, cluster);
if(cluster >= EOC) return;
}
}
void free_directory(f32 *fs, struct directory *dir){
uint32_t i;
for(i = 0; i < dir->num_entries; i++) {
kfree(dir->entries[i].name);
}
kfree(dir->entries);
}
uint8_t *readFile(f32 *fs, struct dir_entry *dirent) {
uint8_t *file = kmalloc(dirent->file_size);
uint8_t *filecurrptr = file;
uint32_t cluster = dirent->first_cluster;
uint32_t copiedbytes = 0;
while(1) {
uint8_t cbytes[fs->cluster_size];
getCluster(fs, cbytes, cluster);
uint32_t remaining = dirent->file_size - copiedbytes;
uint32_t to_copy = remaining > fs->cluster_size ? fs->cluster_size : remaining;
memcpy(filecurrptr, cbytes, to_copy);
filecurrptr += fs->cluster_size;
copiedbytes += to_copy;
cluster = get_next_cluster_id(fs, cluster);
if(cluster >= EOC) break;
}
return file;
}
static void writeFile_impl(f32 *fs, struct directory *dir, uint8_t *file, char *fname, uint32_t flen, uint8_t attrs, uint32_t setcluster) {
uint32_t required_clusters = flen / fs->cluster_size;
if(flen % fs->cluster_size != 0) required_clusters++;
if(required_clusters == 0) required_clusters++; // Allocate at least one cluster.
// One for the traditional 8.3 name, one for each 13 charaters in the extended name.
// Int division truncates, so if there's a remainder from length / 13, add another entry.
uint32_t required_entries_long_fname = (strlen(fname) / 13);
if(strlen(fname) % 13 > 0) {
required_entries_long_fname++;
}
uint32_t required_entries_total = required_entries_long_fname + 1;
uint32_t cluster; // The cluster number that the entries are found in
uint8_t root_cluster[fs->cluster_size];
uint8_t *start_entries = locate_entries(fs, root_cluster, dir, required_entries_total, &cluster);
write_long_filename_entries(start_entries, required_entries_long_fname, fname);
// Write the actual file entry;
uint8_t *actual_entry = start_entries + (required_entries_long_fname * 32);
write_8_3_filename(fname, actual_entry);
// Actually write the file!
uint32_t writtenbytes = 0;
uint32_t prevcluster = 0;
uint32_t firstcluster = 0;
uint32_t i;
if(setcluster) {
// Caller knows where the first cluster is.
// Don't allocate or write anything.
firstcluster = setcluster;
}
else {
for(i = 0; i < required_clusters; i++) {
uint32_t currcluster = allocateCluster(fs);
if(!firstcluster) {
firstcluster = currcluster;
}
uint8_t cluster_buffer[fs->cluster_size];
memset(cluster_buffer, 0, fs->cluster_size);
uint32_t bytes_to_write = flen - writtenbytes;
if(bytes_to_write > fs->cluster_size) {
bytes_to_write = fs->cluster_size;
}
memcpy(cluster_buffer, file + writtenbytes, bytes_to_write);
writtenbytes += bytes_to_write;
putCluster(fs, cluster_buffer, currcluster);
if(prevcluster) {
fs->FAT[prevcluster] = currcluster;
}
prevcluster = currcluster;
}
}
// Write the other fields of the actual entry
// We do it down here because we need the first cluster
// number.
// attrs
actual_entry[11] = attrs;
// high cluster bits
actual_entry[20] = (firstcluster >> 16) & 0xFF;
actual_entry[21] = (firstcluster >> 24) & 0xFF;
// low cluster bits
actual_entry[26] = (firstcluster) & 0xFF;
actual_entry[27] = (firstcluster >> 8) & 0xFF;
// file size
actual_entry[28] = flen & 0xFF;
actual_entry[29] = (flen >> 8) & 0xFF;
actual_entry[30] = (flen >> 16) & 0xFF;
actual_entry[31] = (flen >> 24) & 0xFF;
// Write the cluster back to disk
putCluster(fs, root_cluster, cluster);
flushFAT(fs);
}
void writeFile(f32 *fs, struct directory *dir, uint8_t *file, char *fname, uint32_t flen) {
writeFile_impl(fs, dir, file, fname, flen, 0, 0);
}
static void mkdir_subdirs(f32 *fs, struct directory *dir, uint32_t parentcluster) {
writeFile_impl(fs, dir, NULL, ".", 0, DIRECTORY, dir->cluster);
writeFile_impl(fs, dir, NULL, "..", 0, DIRECTORY, parentcluster);
}
void mkdir(f32 *fs, struct directory *dir, char *dirname) {
writeFile_impl(fs, dir, NULL, dirname, 0, DIRECTORY, 0);
// We need to add the subdirectories '.' and '..'
struct directory subdir;
populate_dir(fs, &subdir, dir->cluster);
uint32_t i;
for(i = 0; i < subdir.num_entries; i++) {
if(strcmp(subdir.entries[i].name, dirname) == 0) {
struct directory newsubdir;
populate_dir(fs, &newsubdir, subdir.entries[i].first_cluster);
mkdir_subdirs(fs, &newsubdir, subdir.cluster);
free_directory(fs, &newsubdir);
}
}
free_directory(fs, &subdir);
}
void print_directory(f32 *fs, struct directory *dir) {
uint32_t i;
uint32_t max_name = 0;
for(i = 0; i < dir->num_entries; i++) {
uint32_t namelen = strlen(dir->entries[i].name);
max_name = namelen > max_name ? namelen : max_name;
}
char *namebuff = kmalloc(max_name + 1);
for(i = 0; i < dir->num_entries; i++) {
// printf("[%d] %*s %c %8d bytes ",
// i,
// -max_name,
// dir->entries[i].name,
// dir->entries[i].dir_attrs & DIRECTORY?'D':' ',
// dir->entries[i].file_size, dir->entries[i].first_cluster);
printf("[%d] ", i);
uint32_t j;
for(j = 0; j < max_name; j++) {
namebuff[j] = ' ';
}
namebuff[max_name] = 0;
for(j = 0; j < strlen(dir->entries[i].name); j++) {
namebuff[j] = dir->entries[i].name[j];
}
printf("%s %c %d ",
namebuff,
dir->entries[i].dir_attrs & DIRECTORY?'D':' ',
dir->entries[i].file_size);
uint32_t cluster = dir->entries[i].first_cluster;
uint32_t cluster_count = 1;
while(1) {
cluster = fs->FAT[cluster];
if(cluster >= EOC) break;
if(cluster == 0) {
PANIC("BAD CLUSTER CHAIN! FS IS CORRUPT!");
}
cluster_count++;
}
printf("clusters: [%d]\n", cluster_count);
}
kfree(namebuff);
}
uint32_t count_free_clusters(f32 *fs) {
uint32_t clusters_in_fat = (fs->bpb.count_sectors_per_FAT32 * 512) / 4;
uint32_t i;
uint32_t count = 0;
for(i = 0; i < clusters_in_fat; i++) {
if(fs->FAT[i] == 0) {
count++;
}
}
return count;
}