-
Notifications
You must be signed in to change notification settings - Fork 5
/
lightning_imagenet_benchmark.py
243 lines (206 loc) · 8.74 KB
/
lightning_imagenet_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""
This example is largely adapted from https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/domain_templates/imagenet.py
"""
import argparse
import os
import random
import numpy as np
from collections import OrderedDict
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
import pytorch_lightning as pl
from pytorch_lightning.core import LightningModule
# pull out resnet names from torchvision models
MODEL_NAMES = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__") and callable(models.__dict__[name])
)
class ImageNetLightningModel(LightningModule):
def __init__(self, hparams):
"""
TODO: add docstring here
"""
super().__init__()
self.hparams = hparams
self.model = models.__dict__[self.hparams.arch](pretrained=self.hparams.pretrained)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
images, target = batch
output = self(images)
loss_val = F.cross_entropy(output, target)
acc1, acc5 = self.__accuracy(output, target, topk=(1, 5))
tqdm_dict = {'train_loss': loss_val}
output = OrderedDict({
'loss': loss_val,
'acc1': acc1,
'acc5': acc5,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
'''def validation_step(self, batch, batch_idx):
images, target = batch
output = self(images)
loss_val = F.cross_entropy(output, target)
acc1, acc5 = self.__accuracy(output, target, topk=(1, 5))
output = OrderedDict({
'val_loss': loss_val,
'val_acc1': acc1,
'val_acc5': acc5,
})
return output'''
'''def validation_epoch_end(self, outputs):
tqdm_dict = {}
for metric_name in ["val_loss", "val_acc1", "val_acc5"]:
metric_total = 0
for output in outputs:
metric_value = output[metric_name]
# reduce manually when using dp
if self.trainer.use_dp or self.trainer.use_ddp2:
metric_value = torch.mean(metric_value)
metric_total += metric_value
tqdm_dict[metric_name] = metric_total / len(outputs)
result = {'progress_bar': tqdm_dict, 'log': tqdm_dict, 'val_loss': tqdm_dict["val_loss"]}
return result'''
@classmethod
def __accuracy(cls, output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def configure_optimizers(self):
optimizer = optim.SGD(
self.parameters(),
lr=self.hparams.lr,
momentum=self.hparams.momentum,
weight_decay=self.hparams.weight_decay
)
scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.1)
return [optimizer], [scheduler]
def train_dataloader(self):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
train_dir = os.path.join(self.hparams.data_path, 'train')
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_dataset = torch.utils.data.Subset(
train_dataset, np.random.choice(len(train_dataset), 2**12, replace=False))
if self.use_ddp:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=self.hparams.batch_size,
shuffle=(train_sampler is None),
#num_workers=0,
num_workers=os.cpu_count(),
sampler=train_sampler
)
return train_loader
'''def val_dataloader(self):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
val_dir = os.path.join(self.hparams.data_path, 'val')
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(val_dir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=self.hparams.batch_size,
shuffle=False,
num_workers=0,
)
return val_loader'''
@staticmethod
def add_model_specific_args(parent_parser): # pragma: no-cover
parser = argparse.ArgumentParser(parents=[parent_parser])
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=MODEL_NAMES,
help='model architecture: ' +
' | '.join(MODEL_NAMES) +
' (default: resnet18)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--seed', type=int, default=42,
help='seed for initializing training. ')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
return parser
def get_args():
parent_parser = argparse.ArgumentParser(add_help=False)
parent_parser.add_argument('--data-path', metavar='DIR', type=str,
help='path to dataset')
parent_parser.add_argument('--save-path', metavar='DIR', default=".", type=str,
help='path to save output')
parent_parser.add_argument('--gpus', type=int, default=1,
help='how many gpus')
parent_parser.add_argument('--distributed-backend', type=str, default='dp', choices=('dp', 'ddp', 'ddp2'),
help='supports three options dp, ddp, ddp2')
parent_parser.add_argument('--use-16bit', dest='use_16bit', action='store_true',
help='if true uses 16 bit precision')
parent_parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser = ImageNetLightningModel.add_model_specific_args(parent_parser)
return parser.parse_args()
def main(hparams):
model = ImageNetLightningModel(hparams)
if hparams.seed is not None:
random.seed(hparams.seed)
torch.manual_seed(hparams.seed)
cudnn.deterministic = True
trainer = pl.Trainer(
default_save_path=hparams.save_path,
gpus=hparams.gpus,
max_epochs=1,
distributed_backend=hparams.distributed_backend,
precision=16 if hparams.use_16bit else 32,
profiler=True,
)
if hparams.evaluate:
trainer.run_evaluation()
else:
trainer.fit(model)
if __name__ == '__main__':
main(get_args())