-
Notifications
You must be signed in to change notification settings - Fork 5
/
lightning_mnist_benchmark.py
163 lines (127 loc) · 5 KB
/
lightning_mnist_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
"""lightning_mnist_benchmark.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ZZW2dmq8gdODCOgaCY8SkW_LSRxWPKSD
# Script to benchmark training using MNIST
The data augmentation applied with `torchvision` and `kornia`.
"""## Import needed libraries"""
#! Needed for Pytorch-Lightning profiling
import logging
logging.basicConfig(level=logging.INFO)
import os
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import torchvision as T
import pytorch_lightning as pl
import kornia as K
"""## Define CNN Model"""
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
"""## Define lightning model"""
class CoolSystem(pl.LightningModule):
def __init__(self, batch_size: int =32, augmentation_backend: str = 'kornia'):
super(CoolSystem, self).__init__()
self._batch_size: int = batch_size
self.model = Net()
if augmentation_backend == 'kornia':
self.augmentation = torch.nn.Sequential(
K.augmentation.RandomAffine(
[-45., 45.], [0., 0.5], [0.5, 1.5], [0., 0.5]
),
K.color.Normalize(0.1307, 0.3081),
)
self.transform = lambda x: K.image_to_tensor(np.array(x)).float() / 255.
elif augmentation_backend == 'torchvision':
self.augmentation = None
self.transform = T.transforms.Compose([
T.transforms.RandomAffine(
[-45., 45.], [0., 0.5], [0.5, 1.5], [0., 0.5]
),
T.transforms.ToTensor(),
T.transforms.Normalize((0.1307,), (0.3081,)),
])
else:
raise ValueError(f"Unsupported backend: {augmentation_backend}")
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
# REQUIRED
x, y = batch
if self.augmentation is not None:
with torch.no_grad():
x = self.augmentation(x) # => we perform GPU/Batched data augmentation
y_hat = self.forward(x)
loss = F.nll_loss(y_hat, y)
tensorboard_logs = {'train_loss': loss}
return {'loss': loss, 'log': tensorboard_logs}
def configure_optimizers(self):
# REQUIRED
# can return multiple optimizers and learning_rate schedulers
# (LBFGS it is automatically supported, no need for closure function)
return torch.optim.Adam(self.parameters(), lr=0.0004)
def prepare_data(self):
MNIST(os.getcwd(), train=True, download=True, transform=self.transform)
def train_dataloader(self):
# REQUIRED
dataset = MNIST(os.getcwd(), train=True, download=False, transform=self.transform)
loader = DataLoader(dataset, batch_size=self._batch_size, num_workers=os.cpu_count())
return loader
"""## Run training"""
from pytorch_lightning import Trainer
devices = ['cpu', 'gpu']
backends = ['kornia', 'torchvision']
batch_sizes = [16, 32, 64, 128, 256, 512, 1028, 2048]
from collections import defaultdict
results_dict = defaultdict(dict)
for device in devices:
results_dict[device] = {}
for backend in backends:
results_dict[device][backend] = {}
for batch_size in batch_sizes:
num_gpus: int = 0 if device == 'cpu' else 1
model = CoolSystem(batch_size=batch_size, augmentation_backend=backend)
# most basic trainer, uses good defaults
prof = pl.profiler.SimpleProfiler()
trainer = Trainer(profiler=prof, max_epochs=1, gpus=num_gpus)
trainer.fit(model)
# sum results
elapsed_time: float = 0.
for (key, val) in prof.recorded_durations.items():
elapsed_time += sum(val)
print(f"## Training device: {device} / backend: {backend} / batch_size: {batch_size} took: {elapsed_time} (s)")
results_dict[device][backend][batch_size] = elapsed_time
# print
print(results_dict)
for device, v1 in results_dict.items():
for backend, v2 in v1.items():
out_stream: str = f"{backend}-{device}"
for batch_size, elapsed_time in v2.items():
out_stream += f"\n{elapsed_time}"
print(out_stream)
print("########")