forked from DmitryUlyanov/texture_nets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.lua
50 lines (38 loc) · 1.15 KB
/
demo.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
require 'nn'
require 'image'
require 'InstanceNormalization'
require 'src/utils'
require 'riseml'
local cmd = torch.CmdLine()
cmd:option('-image_size', 0, 'Resize input image to. Do not resize if 0.')
cmd:option('-model', '', 'Path to trained model.')
cmd:option('-cpu', false, 'use this flag to run on CPU')
local params = cmd:parse(arg)
-- Load model and set type
local model = torch.load(params.model)
if params.cpu then
tp = 'torch.FloatTensor'
else
require 'cutorch'
require 'cunn'
require 'cudnn'
tp = 'torch.CudaTensor'
model = cudnn.convert(model, cudnn)
end
model:type(tp)
model:evaluate()
local function run_image(img_data)
-- Load image and scale
local byte_tensor = torch.ByteTensor(torch.ByteStorage():string(img_data))
local img = image.decompressJPG(byte_tensor, 3):float()
if params.image_size > 0 then
img = image.scale(img, params.image_size, params.image_size)
end
-- Stylize
local input = img:add_dummy()
local stylized = model:forward(input:type(tp)):double()
stylized = deprocess(stylized[1])
-- Return
return image.compressJPG(torch.clamp(stylized,0,1)):storage():string()
end
riseml.serve(run_image)